
Solutions of APMO 2016

Problem 1. We say that a triangle ABC is great if the following holds: for any point
D on the side BC, if P and Q are the feet of the perpendiculars from D to the lines AB and
AC, respectively, then the reflection of D in the line PQ lies on the circumcircle of the triangle
ABC.

Prove that triangle ABC is great if and only if ∠A = 90◦ and AB = AC.

Solution. For every point D on the side BC, let D′ be the reflection of D in the line PQ.
We will first prove that if the triangle satisfies the condition then it is isosceles and right-angled
at A.

Choose D to be the point where the angle bisector from A meets BC. Note that P and Q
lie on the rays AB and AC respectively. Furthermore, P and Q are reflections of each other
in the line AD, from which it follows that PQ ⊥ AD. Therefore, D′ lies on the line AD and
we may deduce that either D′ = A or D′ is the second point of the angle bisector at A and
the circumcircle of ABC. However, since APDQ is a cyclic quadrilateral, the segment PQ
intersects the segment AD. Therefore, D′ lies on the ray DA and therefore D′ = A. By angle
chasing we obtain

∠PD′Q = ∠PDQ = 180◦ − ∠BAC,

and since D′ = A we also know ∠PD′Q = ∠BAC. This implies that ∠BAC = 90◦.
Now we choose D to be the midpoint of BC. Since ∠BAC = 90◦, we can deduce that

DQP is the medial triangle of triangle ABC. Therefore, PQ||BC from which it follows that
DD′ ⊥ BC. But the distance from D′ to BC is equal to both the circumradius of triangle
ABC and to the distance from A to BC. This can only happen if A = D′. This implies that
ABC is isosceles and right-angled at A.

We will now prove that if ABC is isosceles and right-angled at A then the required property
in the problem holds. Let D be any point on side BC. Then D′P = DP and we also have
DP = BP . Hence, D′P = BP and similarly D′Q = CQ. Note that APDQD′ is cyclic
with diameter PQ. Therefore, ∠APD′ = ∠AQD′, from which we obtain ∠BPD′ = ∠CQD′.
So triangles D′PB and D′QC are similar. It follows that ∠PD′Q = ∠PD′C + ∠CD′Q =

∠PD′C + ∠BD′P = ∠BD′C and D′P
D′Q

= D′B
D′C

. So we also obtain that triangles D′PQ and

D′BC are similar. But since DPQ and D′PQ are congruent, we may deduce that ∠BD′C =
∠PD′Q = ∠PDQ = 90◦. Therefore, D′ lies on the circle with diameter BC, which is the
circumcircle of triangle ABC.
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Problem 2. A positive integer is called fancy if it can be expressed in the form
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2a1 + 2a2 + · · ·+ 2a100 ,

where a1, a2, . . . , a100 are non-negative integers that are not necessarily distinct.
Find the smallest positive integer n such that no multiple of n is a fancy number.

Answer: The answer is n = 2101 − 1.

Solution. Let k be any positive integer less than 2101 − 1. Then k can be expressed
in binary notation using at most 100 ones, and therefore there exists a positive integer r and
non-negative integers a1, a2, . . . , ar such that r ≤ 100 and k = 2a1 + · · ·+ 2ar . Notice that for
a positive integer s we have:

2sk = 2a1+s + 2a2+s + · · ·+ 2ar−1+s + (1 + 1 + 2 + · · ·+ 2s−1)2ar

= 2a1+s + 2a2+s + · · ·+ 2ar−1+s + 2ar + 2ar + · · ·+ 2ar+s−1.

This shows that k has a multiple that is a sum of r + s powers of two. In particular, we
may take s = 100− r ≥ 0, which shows that k has a multiple that is a fancy number.

We will now prove that no multiple of n = 2101− 1 is a fancy number. In fact we will prove
a stronger statement, namely, that no multiple of n can be expressed as the sum of at most
100 powers of 2.

For the sake of contradiction, suppose that there exists a positive integer c such that cn is
the sum of at most 100 powers of 2. We may assume that c is the smallest such integer. By
repeatedly merging equal powers of two in the representation of cn we may assume that

cn = 2a1 + 2a2 + · · ·+ 2ar

where r ≤ 100 and a1 < a2 < . . . < ar are distinct non-negative integers. Consider the following
two cases:

• If ar ≥ 101, then 2ar − 2ar−101 = 2ar−101n. It follows that 2a1 + 2a2 + · · ·+ 2ar−1 + 2ar−101

would be a multiple of n that is smaller than cn. This contradicts the minimality of c.

• If ar ≤ 100, then {a1, . . . , ar} is a proper subset of {0, 1, . . . , 100}. Then

n ≤ cn < 20 + 21 + · · ·+ 2100 = n.

This is also a contradiction.

From these contradictions we conclude that it is impossible for cn to be the sum of at most
100 powers of 2. In particular, no multiple of n is a fancy number.

�

Problem 3. Let AB and AC be two distinct rays not lying on the same line, and let ω
be a circle with center O that is tangent to ray AC at E and ray AB at F . Let R be a point
on segment EF . The line through O parallel to EF intersects line AB at P . Let N be the
intersection of lines PR and AC, and let M be the intersection of line AB and the line through
R parallel to AC. Prove that line MN is tangent to ω.

Solution. We present two approaches. The first one introduces an auxiliary point and
studies similarities in the figure. The second one reduces the problem to computations involving
a particular exradius of a triangle. The second approach has two variants.

Solution 1.
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Let the line through N tangent to ω at point X 6= E intersect AB at point M ′. It suffices
to show that M ′R ‖ AC, since this would yield M ′ = M .

Suppose that the line PO intersects AC at Q and the circumcircle of AM ′O at Y , respec-
tively. Then

∠AYM ′ = ∠AOM ′ = 90◦ − ∠M ′OP.

By angle chasing we have ∠EOQ = ∠FOP = 90◦ − ∠AOF = ∠M ′AO = ∠M ′Y P and by
symmetry ∠EQO = ∠M ′PY . Therefore 4M ′Y P ∼ 4EOQ.

On the other hand, we have

∠M ′OP = ∠M ′OF + ∠FOP =
1

2
(∠FOX + ∠FOP + ∠EOQ) =

=
1

2

(
180◦ − ∠XOE

2

)
= 90◦ − ∠XOE

2
.

Since we know that ∠AYM ′ and ∠M ′OP are complementary this implies

∠AYM ′ =
∠XOE

2
= ∠NOE.

Therefore, ∠AYM ′ and ∠NOE are congruent angles, and this means that A and N are
corresponding points in the similarity of triangles 4M ′Y P and 4EOQ. It follows that

AM ′

M ′P
=

NE

EQ
=

NR

RP
.

We conclude that M ′R ‖ AC, as desired.
�

Solution 2a.
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As in Solution 1, we introduce point M ′ and reduce the problem to proving PR
RN = PM ′

M ′A
.

Menelaus theorem in triangle ANP with transversal line FRE yields

PR

RN
· NE

EA
· AF
FP

= 1.

Since AF = EA, we have FP
NE = PR

RN , so that it suffices to prove

FP

NE
=

PM ′

M ′A
. (1)

This is a computation regarding the triangle AM ′N and its excircle opposite A. Indeed,

setting a = M ′N , b = NA, c = M ′A, s = a+ b+ c
2 , x = s − a, y = s − b and z = s − c, then

AE = AF = s, M ′F = z and NE = y. From 4OFP ∼ 4AFO we have FP =
r2a
s , where

ra = OF is the exradius opposite A. Combining the following two standard formulas for the
area of a triangle

|AM ′N |2 = xyzs (Heron’s formula) and |AM ′N | = ra(s− a),

we have r2a = yzs
x . Therefore, FP = yz

x . We can now write everything in (1) in terms of x, y, z.
We conclude that we have to verify

yz
x

y
=

z + yz
x

x + y
,

which is easily seen to be true.
Note: Antoher approach using Menalaus theorem is to construct the tangent from M to

create a point N ′ in AC and then prove, using the theorem, that P , R and N ′ are collinear.
This also reduces to an algebraic identity.

Solution 2b.
As in Solution 1, we introduce point M ′. Let the line through M ′ and parallel to AN

intersect EF at R′. Let P ′ be the intersection of lines NR′ and AM . It suffices to show that
P ′O ‖ FE, since this would yield P = P ′, and then R = R′ and M = M ′. Hence it is enough
to prove that

AF

FP ′
=

AD

DO
, (2)

where D is the intersection of AO and EF . Once again, this reduces to a computation regarding
the triangle AM ′N and its excircle opposite A.

Let u = P ′F and x, y, z, s as in Solution 2a. Note that since AE = AF and M ′R′ ‖ AE, we

have M ′R′ = M ′F = z. Since M ′R′ ‖ AN , we have P ′M ′

P ′A
= M ′R′

NA , that is,

u + z

u + x + y + z
=

z

x + z
.

From this last equation we obtain u = yz
x . Hence AF

FP ′
= xs

yz . Also, as in Solution 2a, we have

r2a = yzs
x .

Finally, using similar triangles ODF , FDA and OFA, and the above equalities, we have

AD

DO
=

AD

DF
· DF

DO
=

AF

OF
· AF
OF

=
s2

r2a
=

s2

yzs
x

=
xs

yz
=

AF

FP ′
,

as required.
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Problem 4. The country Dreamland consists of 2016 cities. The airline Starways wants to
establish some one-way flights between pairs of cities in such a way that each city has exactly
one flight out of it. Find the smallest positive integer k such that no matter how Starways
establishes its flights, the cities can always be partitioned into k groups so that from any city
it is not possible to reach another city in the same group by using at most 28 flights.

Answer: 57

Solution. The flights established by Starways yield a directed graph G on 2016 vertices
in which each vertex has out-degree equal to 1.

We first show that we need at least 57 groups. For this, suppose that G has a directed cycle
of length 57. Then, for any two cities in the cycle, one is reachable from the other using at
most 28 flights. So no two cities in the cycle can belong to the same group. Hence, we need at
least 57 groups.

We will now show that 57 groups are enough. Consider another auxiliary directed graph H
in which the vertices are the cities of Dreamland and there is an arrow from city u to city v
if u can be reached from v using at most 28 flights. Each city has out-degree at most 28. We
will be done if we can split the cities of H in at most 57 groups such that there are no arrows
between vertices of the same group. We prove the following stronger statement.

Lemma: Suppose we have a directed graph on n ≥ 1 vertices such that each vertex has
out-degree at most 28. Then the vertices can be partitioned into 57 groups in such a way that
no vertices in the same group are connected by an arrow.

Proof: We apply induction. The result is clear for 1 vertex. Now suppose we have more
than one vertex. Since the out-degree of each vertex is at most 28, there is a vertex, say v, with
in-degree at most 28. If we remove the vertex v we obtain a graph with fewer vertices which
still satifies the conditions, so by inductive hypothesis we may split it into at most 57 groups
with no adjacent vertices in the same group. Since v has in-degree and out-degree at most 28,
it has at most 56 neighboors in the original directed graph. Therefore, we may add v back and
place it in a group in which it has no neighbors. This completes the inductive step.

�

Problem 5. Find all functions f : R+ → R+ such that

(z + 1)f(x + y) = f(xf(z) + y) + f(yf(z) + x), (3)

for all positive real numbers x, y, z.

Answer: The only solution is f(x) = x for all positive real numbers x.

Solution. The identity function f(x) = x clearly satisfies the functional equation. Now,
let f be a function satisfying the functional equation. Plugging x = y = 1 into (3) we get
2f(f(z) + 1) = (z + 1)(f(2)) for all z ∈ R+. Hence, f is not bounded above.

Lemma. Let a, b, c be positive real numbers. If c is greater than 1, a/b and b/a, then the
system of linear equations

cu + v = a u + cv = b

has a positive real solution u, v.
Proof. The solution is

u =
ca− b

c2 − 1
v =

cb− a

c2 − 1
.

The numbers u and v are positive if the conditions on c above are satisfied.
�
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We will now prove that

f(a) + f(b) = f(c) + f(d) for all a, b, c, d ∈ R+ with a + b = c + d. (4)

Consider a, b, c, d ∈ R+ such that a + b = c + d. Since f is not bounded above, we can
choose a positive number e such that f(e) is greater than 1, a/b, b/a, c/d and d/c. Using the
above lemma, we can find u, v, w, t ∈ R+ satisfying

f(e)u + v = a, u + f(e)v = b

f(e)w + t = c, w + f(e)t = d.

Note that u + v = w + t since (u + v)(f(e) + 1) = a + b and (w + t)(f(e) + 1) = c + d.
Plugging x = u, y = v and z = e into (3) yields f(a) + f(b) = (e + 1)f(u + v). Similarly, we
have f(c) + f(d) = (e + 1)f(w + t). The claim follows immediately.

We then have

yf(x) = f(xf(y)) for all x, y ∈ R+ (5)

since by (3) and (4),

(y + 1)f(x) = f
(x

2
f(y) +

x

2

)
+ f

(x
2
f(y) +

x

2

)
= f(xf(y)) + f(x).

Now, let a = f(1/f(1)). Plugging x = 1 and y = 1/f(1) into (5) yields f(a) = 1. Hence
a = af(a) and f(af(a)) = f(a) = 1. Since af(a) = f(af(a)) by (5), we have f(1) = a = 1. It
follows from (5) that

f(f(y)) = y for all y ∈ R+. (6)

Using (4) we have for all x, y ∈ R+ that

f(x + y) + f(1) = f(x) + f(y + 1), and

f(y + 1) + f(1) = f(y) + f(2).

Therefore

f(x + y) = f(x) + f(y) + b for all x, y ∈ R+, (7)

where b = f(2)− 2f(1) = f(2)− 2. Using (5), (7) and (6), we get

4 + 2b = 2f(2) = f(2f(2)) = f(f(2) + f(2)) = f(f(2)) + f(f(2)) + b = 4 + b.

This shows that b = 0 and thus

f(x + y) = f(x) + f(y) for all x, y ∈ R+.

In particular, f is strictly increasing.
We conclude as follows. Take any positive real number x. If f(x) > x, then f(f(x)) >

f(x) > x = f(f(x)), a contradiction. Similarly, it is not possible that f(x) < x. This shows
that f(x) = x for all positive real numbers x.

�
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