
APMO 1989 – Problems and Solutions

Problem 1
Let x1, x2, . . . , xn be positive real numbers, and let

S = x1 + x2 + · · ·+ xn.

Prove that

(1 + x1)(1 + x2) · · · (1 + xn) ≤ 1 + S +
S2

2!
+
S3

3!
+ · · ·+ Sn

n!
.

Solution 1
Let σk be the kth symmetric polynomial, namely

σk =
∑
|S|=k

S⊆{1,2,...,n}

∏
i∈S

xi,

and more explicitly

σ1 = S, σ2 = x1x2 + x1x3 + · · ·+ xn−1xn, and so on.

Then
(1 + x1)(1 + x2) · · · (1 + xn) = 1 + σ1 + σ2 + · · ·+ σn.

The expansion of

Sk = (x1 + x2 + · · ·+ xn)k = (x1 + x2 + · · ·+ xn)(x1 + x2 + · · ·+ xn) · · · (x1 + x2 + · · ·+ xn)︸ ︷︷ ︸
k times

has at least k! occurrences of
∏

i∈S xi for each subset S with k indices from {1, 2, . . . , n}. In fact,
if π is a permutation of S, we can choose each xπ(i) from the ith factor of (x1 + x2 + · · ·+ xn)k.
Then each term appears at least k! times, and

Sk ≥ k!σk ⇐⇒ σk ≤
Sk

k!
.

Summing the obtained inequalities for k = 1, 2, . . . , n yields the result.

Solution 2
By AM-GM,

(1 + x1)(1 + x2) · · · (1 + xn) ≤
(

(1 + x1) + (1 + x2) + · · ·+ (1 + xn)

n

)n
=

(
1 +

S

n

)n
.

By the binomial theorem,(
1 +

S

n

)n
=

n∑
k=0

(
n

k

)(
S

n

)k
=

n∑
k=0

1

k!

n(n− 1) . . . (n− k + 1)

nk
Sk ≤

n∑
k=0

Sk

k!
,

and the result follows.

Comment: Maclaurin’s inequality states that

σ1
n
≥
√

σ2(
n
2

) ≥ · · · ≥ k

√
σk(
n
k

) ≥ · · · ≥ n

√
σn(
n
n

) .
Then σk ≤

(
n
k

)
Sk

nk = 1
k!
n(n−1)...(n−k+1)

nk Sk ≤ Sk

k!
.
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Problem 2
Prove that the equation

6(6a2 + 3b2 + c2) = 5n2

has no solutions in integers except a = b = c = n = 0.

Solution
We can suppose without loss of generality that a, b, c, n ≥ 0. Let (a, b, c, n) be a solution with
minimum sum a+ b+ c+ n. Suppose, for the sake of contradiction, that a+ b+ c+ n > 0.
Since 6 divides 5n2, n is a multiple of 6. Let n = 6n0. Then the equation reduces to

6a2 + 3b2 + c2 = 30n2
0.

The number c is a multiple of 3, so let c = 3c0. The equation now reduces to

2a2 + b2 + 3c20 = 10n2
0.

Now look at the equation modulo 8:

b2 + 3c20 ≡ 2(n2
0 − a2) (mod 8).

Integers b and c0 have the same parity. Either way, since x2 is congruent to 0 or 1 modulo 4,
b2 + 3c20 is a multiple of 4, so n2

0 − a2 = (n0 − a)(n0 + a) is even, and therefore also a multiple
of 4, since n0 − a and n0 + a have the same parity. Hence 2(n2

0 − a2) is a multiple of 8, and

b2 + 3c20 ≡ 0 (mod 8).

If b and c0 are both odd, b2 + 3c20 ≡ 4 (mod 8), which is impossible. Then b and c0 are both
even. Let b = 2b0 and c0 = 2c1, and we find

a2 + 2b20 + 6c21 = 5n2
0.

Look at the last equation modulo 8:

a2 + 3n2
0 ≡ 2(c21 − b20) (mod 8).

A similar argument shows that a and n0 are both even.
We have proven that a, b, c, n are all even. Then, dividing the original equation by 4 we find

6(6(a/2)2 + 3(b/2)2 + (c/2)2) = 5(n/2)2,

and we find that (a/2, b/2, c/2, n/2) is a new solution with smaller sum. This is a contradiction,
and the only solution is (a, b, c, n) = (0, 0, 0, 0).
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Problem 3
Let A1, A2, A3 be three points in the plane, and for convenience,let A4 = A1, A5 = A2. For
n = 1, 2, and 3, suppose that Bn is the midpoint of AnAn+1, and suppose that Cn is the midpoint
of AnBn. Suppose that AnCn+1 and BnAn+2 meet at Dn, and that AnBn+1 and CnAn+2 meet
at En. Calculate the ratio of the area of triangle D1D2D3 to the area of triangle E1E2E3.

Answer:
25

49
.

Solution
Let G be the centroid of triangle ABC, and also the intersection point of A1B2, A2B3, and
A3B1.

C2

B1

B2

C1

A1

A3A2

D1

E1

G

By Menelao’s theorem on triangle B1A2A3 and line A1D1C2,

A1B1

A1A2

· D1A3

D1B1

· C2A2

C2A3

= 1 ⇐⇒ D1A3

D1B1

= 2 · 3 = 6 ⇐⇒ D1B1

A3B1

=
1

7
.

Since A3G = 2
3
A3B1, if A3B1 = 21t then GA3 = 14t, D1B1 = 21t

7
= 3t, A3D1 = 18t, and

GD1 = A3D1 − A3G = 18t− 14t = 4t, and

GD1

GA3

=
4

14
=

2

7
.

Similar results hold for the other medians, therefore D1D2D3 and A1A2A3 are homothetic with
center G and ratio −2

7
.

By Menelao’s theorem on triangle A1A2B2 and line C1E1A3,

C1A1

C1A2

· E1B2

E1A1

· A3A2

A3B2

= 1 ⇐⇒ E1B2

E1A1

= 3 · 1

2
=

3

2
⇐⇒ A1E1

A1B2

=
2

5
.

If A1B2 = 15u, then A1G = 2
3
· 15u = 10u and GE1 = A1G− A1E1 = 10u− 2

5
· 15u = 4u, and

GE1

GA1

=
4

10
=

2

5
.

Similar results hold for the other medians, therefore E1E2E3 and A1A2A3 are homothetic with
center G and ratio 2

5
.

Then D1D2D3 and E1E2E3 are homothetic with center G and ratio −2
7

: 2
5

= −5
7
, and the ratio

of their area is
(
5
7

)2
= 25

49
.
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Problem 4
Let S be a set consisting of m pairs (a, b) of positive integers with the property that 1 ≤ a <
b ≤ n. Show that there are at least

4m
(m− n2

4
)

3n

triples (a, b, c) such that (a, b), (a, c), and (b, c) belong to S.

Solution
Call a triple (a, b, c) good if and only if (a, b), (a, c), and (b, c) all belong to S. For i in
{1, 2, . . . , n}, let di be the number of pairs in S that contain i, and let Di be the set of numbers
paired with i in S (so |Di| = di). Consider a pair (i, j) ∈ S. Our goal is to estimate the number
of integers k such that any permutation of {i, j, k} is good, that is, |Di ∩Dj|. Note that i /∈ Di

and j /∈ Dj, so i, j /∈ Di ∩Dj; thus any k ∈ Di ∩Dj is different from both i and j, and {i, j, k}
has three elements as required. Now, since Di ∪Dj ⊆ {1, 2, . . . , n},

|Di ∩Dj| = |Di|+ |Dj| − |Di ∪Dj| ≤ di + dj − n.

Summing all the results, and having in mind that each good triple is counted three times (one
for each two of the three numbers), the number of good triples T is at least

T ≥ 1

3

∑
(i,j)∈S

(di + dj − n).

Each term di appears each time i is in a pair from S, that is, di times; there are m pairs in S,
so n is subtracted m times. By the Cauchy-Schwartz inequality

T ≥ 1

3

(
n∑
i=1

d2i −mn

)
≥ 1

3

(
(
∑n

i=1 di)
2

n
−mn

)
.

Finally, the sum
∑n

i=1 di is 2m, since di counts the number of pairs containing i, and each pair
(i, j) is counted twice: once in di and once in dj. Therefore

T ≥ 1

3

(
(2m)2

n
−mn

)
= 4m

(m− n2

4
)

3n
.

Comment: This is a celebrated graph theory fact named Goodman’s bound, after A. M. Good-
man’s method published in 1959. The generalized version of the problem is still studied to this
day.
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Problem 5
Determine all functions f from the reals to the reals for which

(1) f(x) is strictly increasing,

(2) f(x) + g(x) = 2x for all real x, where g(x) is the composition inverse function to f(x).

(Note: f and g are said to be composition inverses if f(g(x)) = x and g(f(x)) = x for all real
x.)

Answer: f(x) = x+ c, c ∈ R constant.

Solution
Denote by fn the nth iterate of f , that is, fn(x) = f(f(. . . f︸ ︷︷ ︸

n times

(x))).

Plug x→ fn+1(x) in (2): since g(fn+1(x)) = g(f(fn(x))) = fn(x),

fn+2(x) + fn(x) = 2fn+1(x),

that is,
fn+2(x)− fn+1(x) = fn+1(x)− fn(x).

Therefore fn(x) − fn−1(x) does not depend on n, and is equal to f(x) − x. Summing the
corresponding results for smaller values of n we find

fn(x)− x = n(f(x)− x).

Since g has the same properties as f ,

gn(x)− x = n(g(x)− x) = −n(f(x)− x).

Finally, g is also increasing, because since f is increasing g(x) > g(y) =⇒ f(g(x)) >
f(g(y)) =⇒ x > y. An induction proves that fn and gn are also increasing functions.
Let x > y be real numbers. Since fn and gn are increasing,

x+ n(f(x)− x) > y + n(f(y)− y) ⇐⇒ n[(f(x)− x)− (f(y)− y)] > y − x

and
x− n(f(x)− x) > y − n(f(y)− y) ⇐⇒ n[(f(x)− x)− (f(y)− y)] < x− y.

Summing it up,
|n[(f(x)− x)− (f(y)− y)]| < x− y for all n ∈ Z>0.

Suppose that a = f(x)− x and b = f(y)− y are distinct. Then, for all positive integers n,

|n(a− b)| < x− y,

which is false for a sufficiently large n. Hence a = b, and f(x)− x is a constant c for all x ∈ R,
that is, f(x) = x+ c.
It is immediate that f(x) = x+ c satisfies the problem, as g(x) = x− c.
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