APMO 1989 — Problems and Solutions

Problem 1
Let x1, 29, ..., x, be positive real numbers, and let
S=x14+ 39+ + Ty
Prove that
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Solution 1
Let o be the kth symmetric polynomial, namely

O = E Hllfzy
|S|=k €S
SC{1,2,...,n}

and more explicitly
or=15, 09=x1T9+ 1123+ -+ TH_12,, and so on.

Then

The expansion of

SP=(ridat - Fz) =@+ at+ ot r) @ttt a) (Bt @)
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TV
k times

has at least k! occurrences of [ ], ¢ ; for each subset S with & indices from {1,2,...,n}. In fact,
if 7 is a permutation of S, we can choose each x,(; from the ith factor of (x1 + 29+ ---+ xn)k
Then each term appears at least k! times, and
Sk
Sk > ]C'O'k — o0 < g

Summing the obtained inequalities for £ = 1,2, ..., n yields the result.

Solution 2
By AM-GM,

At e)(1t22) (14 m,) < <(1+x1)+(1+x2)+...+(1+xn)>"_ <1+§>”.

n
By the binomial theorem,

L

k=0

and the result follows.

Comment: Maclaurin’s inequality states that
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Problem 2
Prove that the equation
6(6a> + 3b* + ¢*) = 5n”

has no solutions in integers except a =b=c=n = 0.

Solution

We can suppose without loss of generality that a,b,c¢,n > 0. Let (a,b,c,n) be a solution with
minimum sum a + b + ¢ + n. Suppose, for the sake of contradiction, that a + b+ c+n > 0.
Since 6 divides 5n?, n is a multiple of 6. Let n = 6ny. Then the equation reduces to

6a® + 3b* + ¢ = 30n;.
The number ¢ is a multiple of 3, so let ¢ = 3¢g. The equation now reduces to
2a® +b* + 3¢5 = 10n3.
Now look at the equation modulo 8:
b +3c2 =2(n3 —a®) (mod 8).

Integers b and ¢y have the same parity. Either way, since z? is congruent to 0 or 1 modulo 4,
b? + 3cZ is a multiple of 4, so n2 — a® = (ny — a)(ng + a) is even, and therefore also a multiple
of 4, since ny — a and ng + a have the same parity. Hence 2(ng — a?) is a multiple of 8, and

b +3c2=0 (mod 8).

If b and ¢y are both odd, v* + 3¢ = 4 (mod 8), which is impossible. Then b and ¢y are both
even. Let b = 2by and ¢y = 2¢;, and we find

a® + 2b5 + 6¢7 = 5ng.
Look at the last equation modulo 8:
a® +3n3 = 2(c3 — b5) (mod 8).

A similar argument shows that a and ny are both even.
We have proven that a, b, c,n are all even. Then, dividing the original equation by 4 we find

6(6(a/2)* +3(b/2)* + (¢/2)*) = 5(n/2)?,

and we find that (a/2,0/2,¢/2,n/2) is a new solution with smaller sum. This is a contradiction,
and the only solution is (a, b, c¢,n) = (0,0,0,0).



Problem 3

Let Ai, Ay, A3 be three points in the plane, and for convenience,let Ay = A;, A5 = A,. For
n = 1,2, and 3, suppose that B,, is the midpoint of A, A,,. 1, and suppose that C,, is the midpoint
of A, B,. Suppose that A,C,.1 and B, A, s meet at D,,, and that A,B,,; and C, A, o meet
at F,. Calculate the ratio of the area of triangle DD, D3 to the area of triangle FyFEsFEs.
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Solution
Let G be the centroid of triangle ABC, and also the intersection point of A;Bsy, A;Bs, and
AgBl.

Ay
Ch
By
Ay Oy By As

By Menelao’s theorem on triangle By As A3 and line A; D,C5,

A1B; DA A DA DB 1
11‘ 13‘02 2:1@ 13:2'3:6@ 11:_‘
AlAg DlBl CQAg DlBl A3B1 7

Since AgG = %AgBl, if A3B1 = 21t then GA3 = 14t, DlBl = Q—%t = ?)t, A3D1 = 18t, and
GDl = A3D1 - A3G =18t — 14t = 4t, and

GD, 4 2

GA; 14 7

Similar results hold for the other medians, therefore Dy Dy D3 and A; Ay A3 are homothetic with
center G and ratio —2.
By Menelao’s theorem on triangle A; As By and line C} F4 As,

ClAl ElBQ A3A2 ElBQ 3 AlEl 2

1
: : =1 < _3. 22 e _
ClAQ ElAl AdBQ ElAl 2 2 AlBQ 5

If AiBy = 15u, then A;G = % -15u = 10u and GE; = A|G — A1FE; = 10u — % - 15u = 4u, and

GE, 4 2

GA, 10 5

Similar results hold for the other medians, therefore E4 EsF5 and A; Ay A3 are homothetic with
center G and ratio %

Then DyDyDs5 and E; E5E5 are homothetic with center G and ratio —% 2 = 2 and the ratio

5 79
) ) 2
of their area is (%) = %.



Problem 4
Let S be a set consisting of m pairs (a, b) of positive integers with the property that 1 < a <
b < n. Show that there are at least ,
(m— 1)
3n
triples (a, b, ¢) such that (a,b), (a,c), and (b, c) belong to S.

4dm

Solution

Call a triple (a,b,c) good if and only if (a,b), (a,c), and (b,c) all belong to S. For i in
{1,2,...,n}, let d; be the number of pairs in S that contain i, and let D; be the set of numbers
paired with i in S (so |D;| = d;). Consider a pair (7, j) € S. Our goal is to estimate the number
of integers k such that any permutation of {i, j, k} is good, that is, |D; N D;|. Note that ¢ ¢ D,
and j ¢ D;, so4,j ¢ D; N Dy; thus any k € D; N D; is different from both ¢ and j, and {7, j, k}
has three elements as required. Now, since D; U D; C {1,2,...,n},

|D; N Dj| = |Di| + |Dj| — [D; U Dj| < di + dj — n.

Summing all the results, and having in mind that each good triple is counted three times (one
for each two of the three numbers), the number of good triples T is at least

1Zal—i—d—n
i,7)€S

Each term d; appears each time ¢ is in a pair from S, that is, d; times; there are m pairs in S,
so n is subtracted m times. By the Cauchy-Schwartz inequality

1 [ 1 P d)?
T>- (de —mn) > — (—(Z’1 i — mn) :
3 — 3 n

Finally, the sum ), d; is 2m, since d; counts the number of pairs containing ¢, and each pair
(i,7) is counted twice: once in d; and once in d;. Therefore

T>1(<2_””L>2_mn) — )

n 3n

OO

Comment: This is a celebrated graph theory fact named Goodman’s bound, after A. M. Good-
man’s method published in 1959. The generalized version of the problem is still studied to this
day.



Problem 5
Determine all functions f from the reals to the reals for which

(1
2

) f(z) is strictly increasing,
) f(x) + g(z) = 2z for all real =, where g(z) is the composition inverse function to f(z).

(
(Note: f and g are said to be composition inverses if f(g(z)) = x and g(f(x)) = z for all real

Answer: f(z) =x + ¢, ¢ € R constant.

Solution
Denote by f, the nth iterate of f, that is, f.(x) = f(f(... f(x))).
—_—

n times

Plug = fur(2) in (2): since g(fura(2)) = g (Fule))) = (),
fn+2(x) + fn(x) = 2fn+1($)a

that is,
fn+2(x) - fn+1($) = fn+1(x) - fn(x)

Therefore f,(z) — fn—1(z) does not depend on n, and is equal to f(z) — z. Summing the
corresponding results for smaller values of n we find

fu(x) — 2 =n(f(z) - ).

Since g has the same properties as f,

gn(®) — 2 =n(g(r) — x) = —n(f(z) — ).

Finally, ¢ is also increasing, because since f is increasing g(z) > g(y) = f(g(x)) >
f(g(y)) = x >y. An induction proves that f,, and g, are also increasing functions.
Let = > y be real numbers. Since f,, and g, are increasing,

z+n(f(x) —z)>y+n(fly) —y) <= nl(f(x) —2) - (fly) —y)] >y —=x
and

z—n(f(z) —z) >y —n(fly) —y) <= n[(f(z) —2) = (fly) —y)] <z -y
Summing it up,

In[(f(z) —2) = (f(y) —y)l| <z —y forallneZs.
Suppose that a = f(z) — x and b = f(y) — y are distinct. Then, for all positive integers n,

n(a=b)| <z -y,

which is false for a sufficiently large n. Hence a = b, and f(x) — x is a constant c¢ for all =z € R,
that is, f(z) =z + c.
It is immediate that f(x) = = + ¢ satisfies the problem, as g(z) = = — c.



