APMO 1993 - Problems and Solutions

Problem 1

Let $A B C D$ be a quadrilateral such that all sides have equal length and angle $\angle A B C$ is 60 degrees. Let ℓ be a line passing through D and not intersecting the quadrilateral (except at $D)$. Let E and F be the points of intersection of ℓ with $A B$ and $B C$ respectively. Let M be the point of intersection of $C E$ and $A F$.
Prove that $C A^{2}=C M \times C E$.

Solution

Triangles $A E D$ and $C D F$ are similar, because $A D \| C F$ and $A E \| C D$. Thus, since $A B C$ and $A C D$ are equilateral triangles,

$$
\frac{A E}{C D}=\frac{A D}{C F} \Longleftrightarrow \frac{A E}{A C}=\frac{A C}{C F}
$$

The last equality combined with

$$
\angle E A C=180^{\circ}-\angle B A C=120^{\circ}=\angle A C F
$$

shows that triangles $E A C$ and $A C F$ are also similar. Therefore $\angle C A M=\angle C A F=\angle A E C$, which implies that line $A C$ is tangent to the circumcircle of $A M E$. By the power of a point, $C A^{2}=C M \cdot C E$, and we are done.

Problem 2

Find the total number of different integer values the function

$$
f(x)=[x]+[2 x]+\left[\frac{5 x}{3}\right]+[3 x]+[4 x]
$$

takes for real numbers x with $0 \leq x \leq 100$.
Note: $[t]$ is the largest integer that does not exceed t.
Answer: 734.

Solution

Note that, since $[x+n]=[x]+n$ for any integer n,

$$
f(x+3)=[x+3]+[2(x+3)]+\left[\frac{5(x+3)}{3}\right]+[3(x+3)]+[4(x+3)]=f(x)+35
$$

one only needs to investigate the interval $[0,3)$.
The numbers in this interval at which at least one of the real numbers $x, 2 x, \frac{5 x}{3}, 3 x, 4 x$ is an integer are

- $0,1,2$ for x;
- $\frac{n}{2}, 0 \leq n \leq 5$ for $2 x$;
- $\frac{3 n}{5}, 0 \leq n \leq 4$ for $\frac{5 x}{3}$;
- $\frac{n}{3}, 0 \leq n \leq 8$ for $3 x$;
- $\frac{n}{4}, 0 \leq n \leq 11$ for $4 x$.

Of these numbers there are

- 3 integers $(0,1,2)$;
- 3 irreducible fractions with 2 as denominator (the numerators are $1,3,5$);
- 6 irreducible fractions with 3 as denominator (the numerators are $1,2,4,5,7,8$);
- 6 irreducible fractions with 4 as denominator (the numerators are $1,3,5,7,9,11,13,15$);
- 4 irreducible fractions with 5 as denominator (the numerators are $3,6,9,12$).

Therefore $f(x)$ increases 22 times per interval. Since $100=33 \cdot 3+1$, there are $33 \cdot 22$ changes of value in [0,99). Finally, there are 8 more changes in [99, 100]: 99, 100, $99 \frac{1}{2}, 99 \frac{1}{3}, 99 \frac{2}{3}, 99 \frac{1}{4}$, $99 \frac{3}{4}, 99 \frac{3}{5}$.
The total is then $33 \cdot 22+8=734$.
Comment: A more careful inspection shows that the range of f are the numbers congruent modulo 35 to one of

$$
0,1,2,4,5,6,7,11,12,13,14,16,17,18,19,23,24,25,26,28,29,30
$$

in the interval $[0, f(100)]=[0,1166]$. Since $1166 \equiv 11(\bmod 35)$, this comprises 33 cycles plus the 8 numbers in the previous list.

Problem 3

Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad \text { and } \quad g(x)=c_{n+1} x^{n+1}+c_{n} x^{n}+\cdots+c_{0}
$$

be non-zero polynomials with real coefficients such that $g(x)=(x+r) f(x)$ for some real number r. If $a=\max \left(\left|a_{n}\right|, \ldots,\left|a_{0}\right|\right)$ and $c=\max \left(\left|c_{n+1}\right|, \ldots,\left|c_{0}\right|\right)$, prove that $\frac{a}{c} \leq n+1$.

Solution

Expanding $(x+r) f(x)$, we find that $c_{n+1}=a_{n}, c_{k}=a_{k-1}+r a_{k}$ for $k=1,2, \ldots, n$, and $c_{0}=r a_{0}$. Consider three cases:

- $r=0$. Then $c_{0}=0$ and $c_{k}=a_{k-1}$ for $k=1,2, \ldots, n$, and $a=c \Longrightarrow \frac{a}{c}=1 \leq n+1$.
- $|r| \geq 1$. Then

$$
\begin{gathered}
\left|a_{0}\right|=\left|\frac{c_{0}}{r}\right| \leq c \\
\left|a_{1}\right|=\left|\frac{c_{1}-a_{0}}{r}\right| \leq\left|c_{1}\right|+\left|a_{0}\right| \leq 2 c
\end{gathered}
$$

and inductively if $\left|a_{k}\right| \leq(k+1) c$

$$
\left|a_{k+1}\right|=\left|\frac{c_{k+1}-a_{k}}{r}\right| \leq\left|c_{k+1}\right|+\left|a_{k}\right| \leq c+(k+1) c=(k+2) c .
$$

Therefore, $\left|a_{k}\right| \leq(k+1) c \leq(n+1) c$ for all k, and $a \leq(n+1) c \Longleftrightarrow \frac{a}{c} \leq n+1$.

- $0<|r|<1$. Now work backwards: $\left|a_{n}\right|=\left|c_{n+1}\right| \leq c$,

$$
\left|a_{n-1}\right|=\left|c_{n}-r a_{n}\right| \leq\left|c_{n}\right|+\left|r a_{n}\right|<c+c=2 c,
$$

and inductively if $\left|a_{n-k}\right| \leq(k+1) c$

$$
\left|a_{n-k-1}\right|=\left|c_{n-k}-r a_{n-k}\right| \leq\left|c_{n-k}\right|+\left|r a_{n-k}\right|<c+(k+1) c=(k+2) c .
$$

Therefore, $\left|a_{n-k}\right| \leq(k+1) c \leq(n+1) c$ for all k, and $a \leq(n+1) c$ again.

Problem 4

Determine all positive integers n for which the equation

$$
x^{n}+(2+x)^{n}+(2-x)^{n}=0
$$

has an integer as a solution.
Answer: $n=1$.

Solution

If n is even, $x^{n}+(2+x)^{n}+(2-x)^{n}>0$, so n is odd.
For $n=1$, the equation reduces to $x+(2+x)+(2-x)=0$, which has the unique solution $x=-4$.
For $n>1$, notice that x is even, because $x, 2-x$, and $2+x$ have all the same parity. Let $x=2 y$, so the equation reduces to

$$
y^{n}+(1+y)^{n}+(1-y)^{n}=0 .
$$

Looking at this equation modulo 2 yields that $y+(1+y)+(1-y)=y+2$ is even, so y is even. Using the factorization

$$
a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+\cdots+b^{n-1}\right) \quad \text { for } n \text { odd, }
$$

which has a sum of n terms as the second factor, the equation is now equivalent to

$$
y^{n}+(1+y+1-y)\left((1+y)^{n-1}-(1+y)^{n-2}(1-y)+\cdots+(1-y)^{n-1}\right)=0
$$

or

$$
y^{n}=-2\left((1+y)^{n-1}-(1+y)^{n-2}(1-y)+\cdots+(1-y)^{n-1}\right) .
$$

Each of the n terms in the second factor is odd, and n is odd, so the second factor is odd. Therefore, y^{n} has only one factor 2 , which is a contradiction to the fact that, y being even, y^{n} has at least $n>1$ factors 2 . Hence there are no solutions if $n>1$.

Problem 5

Let $P_{1}, P_{2}, \ldots, P_{1993}=P_{0}$ be distinct points in the $x y$-plane with the following properties:
(i) both coordinates of P_{i} are integers, for $i=1,2, \ldots, 1993$;
(ii) there is no point other than P_{i} and P_{i+1} on the line segment joining P_{i} with P_{i+1} whose coordinates are both integers, for $i=0,1, \ldots, 1992$.

Prove that for some $i, 0 \leq i \leq 1992$, there exists a point Q with coordinates $\left(q_{x}, q_{y}\right)$ on the line segment joining P_{i} with P_{i+1} such that both $2 q_{x}$ and $2 q_{y}$ are odd integers.

Solution

Call a point $(x, y) \in \mathbb{Z}^{2}$ even or odd according to the parity of $x+y$. Since there are an odd number of points, there are two points $P_{i}=(a, b)$ and $P_{i+1}=(c, d), 0 \leq i \leq 1992$ with the same parity. This implies that $a+b+c+d$ is even. We claim that the midpoint of $P_{i} P_{i+1}$ is the desired point Q.
In fact, since $a+b+c+d=(a+c)+(b+d)$ is even, a and c have the same parity if and only if b and d also have the same parity. If both happen then the midpoint of $P_{i} P_{i+1}, Q=\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$, has integer coordinates, which violates condition (ii). Then a and c, as well as b and d, have different parities, and $2 q_{x}=a+c$ and $2 q_{y}=b+d$ are both odd integers.

