
APMO 1993 – Problems and Solutions

Problem 1
Let ABCD be a quadrilateral such that all sides have equal length and angle ∠ABC is 60
degrees. Let ` be a line passing through D and not intersecting the quadrilateral (except at
D). Let E and F be the points of intersection of ` with AB and BC respectively. Let M be
the point of intersection of CE and AF .
Prove that CA2 = CM × CE.

Solution

B

A

E D F

C

M

Triangles AED and CDF are similar, because AD ‖ CF and AE ‖ CD. Thus, since ABC
and ACD are equilateral triangles,

AE

CD
=

AD

CF
⇐⇒ AE

AC
=

AC

CF
.

The last equality combined with

∠EAC = 180◦ − ∠BAC = 120◦ = ∠ACF

shows that triangles EAC and ACF are also similar. Therefore ∠CAM = ∠CAF = ∠AEC,
which implies that line AC is tangent to the circumcircle of AME. By the power of a point,
CA2 = CM · CE, and we are done.
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Problem 2
Find the total number of different integer values the function

f(x) = [x] + [2x] +

[
5x

3

]
+ [3x] + [4x]

takes for real numbers x with 0 ≤ x ≤ 100.
Note: [t] is the largest integer that does not exceed t.

Answer: 734.

Solution
Note that, since [x + n] = [x] + n for any integer n,

f(x + 3) = [x + 3] + [2(x + 3)] +

[
5(x + 3)

3

]
+ [3(x + 3)] + [4(x + 3)] = f(x) + 35,

one only needs to investigate the interval [0, 3).
The numbers in this interval at which at least one of the real numbers x, 2x, 5x

3
, 3x, 4x is an

integer are

� 0, 1, 2 for x;

�
n
2
, 0 ≤ n ≤ 5 for 2x;

�
3n
5

, 0 ≤ n ≤ 4 for 5x
3

;

�
n
3
, 0 ≤ n ≤ 8 for 3x;

�
n
4
, 0 ≤ n ≤ 11 for 4x.

Of these numbers there are

� 3 integers (0, 1, 2);

� 3 irreducible fractions with 2 as denominator (the numerators are 1, 3, 5);

� 6 irreducible fractions with 3 as denominator (the numerators are 1, 2, 4, 5, 7, 8);

� 6 irreducible fractions with 4 as denominator (the numerators are 1, 3, 5, 7, 9, 11, 13, 15);

� 4 irreducible fractions with 5 as denominator (the numerators are 3, 6, 9, 12).

Therefore f(x) increases 22 times per interval. Since 100 = 33 · 3 + 1, there are 33 · 22 changes
of value in [0, 99). Finally, there are 8 more changes in [99, 100]: 99, 100, 991

2
, 991

3
, 992

3
, 991

4
,

993
4
, 993

5
.

The total is then 33 · 22 + 8 = 734.

Comment: A more careful inspection shows that the range of f are the numbers congruent
modulo 35 to one of

0, 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19, 23, 24, 25, 26, 28, 29, 30

in the interval [0, f(100)] = [0, 1166]. Since 1166 ≡ 11 (mod 35), this comprises 33 cycles plus
the 8 numbers in the previous list.
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Problem 3
Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 and g(x) = cn+1x
n+1 + cnx

n + · · ·+ c0

be non-zero polynomials with real coefficients such that g(x) = (x+r)f(x) for some real number
r. If a = max(|an|, . . . , |a0|) and c = max(|cn+1|, . . . , |c0|), prove that a

c
≤ n + 1.

Solution
Expanding (x+r)f(x), we find that cn+1 = an, ck = ak−1+rak for k = 1, 2, . . . , n, and c0 = ra0.
Consider three cases:

� r = 0. Then c0 = 0 and ck = ak−1 for k = 1, 2, . . . , n, and a = c =⇒ a
c

= 1 ≤ n + 1.

� |r| ≥ 1. Then

|a0| =
∣∣∣c0
r

∣∣∣ ≤ c,

|a1| =
∣∣∣∣c1 − a0

r

∣∣∣∣ ≤ |c1|+ |a0| ≤ 2c,

and inductively if |ak| ≤ (k + 1)c

|ak+1| =
∣∣∣∣ck+1 − ak

r

∣∣∣∣ ≤ |ck+1|+ |ak| ≤ c + (k + 1)c = (k + 2)c.

Therefore, |ak| ≤ (k + 1)c ≤ (n + 1)c for all k, and a ≤ (n + 1)c ⇐⇒ a
c
≤ n + 1.

� 0 < |r| < 1. Now work backwards : |an| = |cn+1| ≤ c,

|an−1| = |cn − ran| ≤ |cn|+ |ran| < c + c = 2c,

and inductively if |an−k| ≤ (k + 1)c

|an−k−1| = |cn−k − ran−k| ≤ |cn−k|+ |ran−k| < c + (k + 1)c = (k + 2)c.

Therefore, |an−k| ≤ (k + 1)c ≤ (n + 1)c for all k, and a ≤ (n + 1)c again.
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Problem 4
Determine all positive integers n for which the equation

xn + (2 + x)n + (2− x)n = 0

has an integer as a solution.

Answer: n = 1.

Solution
If n is even, xn + (2 + x)n + (2− x)n > 0, so n is odd.
For n = 1, the equation reduces to x + (2 + x) + (2 − x) = 0, which has the unique solution
x = −4.
For n > 1, notice that x is even, because x, 2 − x, and 2 + x have all the same parity. Let
x = 2y, so the equation reduces to

yn + (1 + y)n + (1− y)n = 0.

Looking at this equation modulo 2 yields that y+ (1 + y) + (1− y) = y+ 2 is even, so y is even.
Using the factorization

an + bn = (a + b)(an−1 − an−2b + · · ·+ bn−1) for n odd,

which has a sum of n terms as the second factor, the equation is now equivalent to

yn + (1 + y + 1− y)((1 + y)n−1 − (1 + y)n−2(1− y) + · · ·+ (1− y)n−1) = 0,

or
yn = −2((1 + y)n−1 − (1 + y)n−2(1− y) + · · ·+ (1− y)n−1).

Each of the n terms in the second factor is odd, and n is odd, so the second factor is odd.
Therefore, yn has only one factor 2, which is a contradiction to the fact that, y being even, yn

has at least n > 1 factors 2. Hence there are no solutions if n > 1.
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Problem 5
Let P1, P2, . . . , P1993 = P0 be distinct points in the xy-plane with the following properties:

(i) both coordinates of Pi are integers, for i = 1, 2, . . . , 1993;

(ii) there is no point other than Pi and Pi+1 on the line segment joining Pi with Pi+1 whose
coordinates are both integers, for i = 0, 1, . . . , 1992.

Prove that for some i, 0 ≤ i ≤ 1992, there exists a point Q with coordinates (qx, qy) on the line
segment joining Pi with Pi+1 such that both 2qx and 2qy are odd integers.

Solution
Call a point (x, y) ∈ Z2 even or odd according to the parity of x + y. Since there are an odd
number of points, there are two points Pi = (a, b) and Pi+1 = (c, d), 0 ≤ i ≤ 1992 with the
same parity. This implies that a + b + c + d is even. We claim that the midpoint of PiPi+1 is
the desired point Q.
In fact, since a+ b+ c+d = (a+ c) + (b+d) is even, a and c have the same parity if and only if
b and d also have the same parity. If both happen then the midpoint of PiPi+1, Q =

(
a+c
2
, b+d

2

)
,

has integer coordinates, which violates condition (ii). Then a and c, as well as b and d, have
different parities, and 2qx = a + c and 2qy = b + d are both odd integers.
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