APMO 1993 — Problems and Solutions

Problem 1

Let ABCD be a quadrilateral such that all sides have equal length and angle ZABC' is 60
degrees. Let ¢ be a line passing through D and not intersecting the quadrilateral (except at
D). Let E and F be the points of intersection of ¢ with AB and BC respectively. Let M be
the point of intersection of CE and AF.

Prove that CA? = OCM x CE.

Solution

E---=" D F
Triangles AED and CDF are similar, because AD || CF and AE || CD. Thus, since ABC
and ACD are equilateral triangles,
AE  AD — AE  AC
CD CF AC ~ CF
The last equality combined with
LFEAC =180° — LBAC =120° = LZACF

shows that triangles FAC and ACF are also similar. Therefore Z/CAM = Z/CAF = ZAEC,
which implies that line AC' is tangent to the circumcircle of AME. By the power of a point,
CA? = CM - CE, and we are done.



Problem 2
Find the total number of different integer values the function

f(z) = [z] + [22] + {%ﬂ + [3z] + [4z]

takes for real numbers x with 0 < 2 < 100.
Note: [t] is the largest integer that does not exceed ¢.

Answer: 734.

Solution
Note that, since [x + n] = [z] + n for any integer n,

5(z + 3)

f(x+3)—[x+3]+[2(x+3)]+[ 3

} + [3(z + 3)] + [4(z + 3)] = f(x) + 35,

one only needs to investigate the interval [0, 3).
The numbers in this interval at which at least one of the real numbers z, 2z
integer are

5x

;55 3T, 4 is an

e 0,1,2 for x;

e 7,0<n <5 for 2w;
o 3 0<n<4for 2
° %,0§n§8for3x;

° n < 11 for 4z.
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Of these numbers there are
e 3 integers (0, 1,2);
e 3 irreducible fractions with 2 as denominator (the numerators are 1,3, 5);
e 6 irreducible fractions with 3 as denominator (the numerators are 1,2,4,5,7,8);
e 6 irreducible fractions with 4 as denominator (the numerators are 1,3,5,7,9,11, 13, 15);
(

e 4 irreducible fractions with 5 as denominator (the numerators are 3, 6,9, 12).

Therefore f(z) increases 22 times per interval. Since 100 = 33 - 3 + 1, there are 33 - 22 changes
of value in [0,99). Finally, there are 8 more changes in [99,100]: 99, 100, 99%, 99%, 99%, 994—117
993, 992.

The total is then 33 - 22 + 8 = 734.

Comment: A more careful inspection shows that the range of f are the numbers congruent
modulo 35 to one of

0,1,2,4,5,6,7,11,12,13, 14,16, 17, 18, 19, 23, 24, 25, 26, 28, 29, 30

in the interval [0, f(100)] = [0, 1166]. Since 1166 = 11 (mod 35), this comprises 33 cycles plus
the 8 numbers in the previous list.



Problem 3
Let
f(x) =apa" +ap 12" '+ +ap and  g(z) = e+ ™ + -+ co

be non-zero polynomials with real coefficients such that g(z) = (z+r) f(z) for some real number

r. If a = max(|ay|,...,|a|) and ¢ = max(|cp41], ..., |co]), prove that ¢ < n + 1.
Solution
Expanding (x+7r)f(x), we find that ¢,.1 = a,, ¢y = ag_1+ra, for k=1,2,...,n, and ¢y = rayp.

Consider three cases:
e r=0. Thency=0and ¢y =ap for k=1,2,....;n,anda=c = ¢ =1<n+1.
e |r| > 1. Then
¢
’CL()| - ‘_0’ S C,
r

C1 — Qo

|a1| = S |Cl| + |CLO| S 20,

and inductively if |ax| < (k+ 1)c

Ck4+1 — A

" <legs1| + lag| < c+ (k+ 1)e= (k+ 2)c.

’a'k:-i-ll =

Therefore, |ay| < (k+1)c < (n+1)cforallk,and a < (n+1)c <= 2 <n+1.
e 0 < |r| < 1. Now work backwards: |a,| = |c,+1| < ¢,
lan—1| = |cn — ray| < lcn| + |ra,| < c+c=2c,
and inductively if |a,—x| < (K + 1)c
lan—r—1] = |ch — ran—i| < |cni| + |ran—i| <c+ (k+1)c= (k+2)c.

Therefore, |a, ;| < (k+ 1)c < (n+ 1)c for all k, and a < (n + 1)c again.



Problem 4
Determine all positive integers n for which the equation

"+ 24+2)"+(2—-2)"=0

has an integer as a solution.

Answer: n = 1.

Solution

If niseven, 2"+ (2+2)" + (2 — x)" > 0, so n is odd.

For n = 1, the equation reduces to x + (2 + x) + (2 — ) = 0, which has the unique solution
r = —4.

For n > 1, notice that = is even, because x, 2 — x, and 2 4+ z have all the same parity. Let
x = 2y, so the equation reduces to

'+ (1+y)"+(1—y)" =0.

Looking at this equation modulo 2 yields that y+ (1+y)+ (1 —y) = y+2 is even, so y is even.
Using the factorization

a” +b" = (a+0b)(a" ' —a" b+ -+ ") forn odd,
which has a sum of n terms as the second factor, the equation is now equivalent to
YV Ayl (A +y)" T = A +y)" A=y e+ (L-y)" ) =0,

=2+ )" A+ Ay e (L)),

Each of the n terms in the second factor is odd, and n is odd, so the second factor is odd.
Therefore, y™ has only one factor 2, which is a contradiction to the fact that, y being even, y"
has at least n > 1 factors 2. Hence there are no solutions if n > 1.



Problem 5
Let Py, Ps, ..., Pigg3 = Py be distinct points in the xy-plane with the following properties:

(i) both coordinates of P; are integers, for i = 1,2,...,1993;

ii) there is no point other than P; and P;,; on the line segment joining P; with P;,; whose
+ +
coordinates are both integers, for : = 0,1,...,1992.

Prove that for some 4, 0 < i < 1992, there exists a point () with coordinates (g, g,) on the line
segment joining F; with P;1; such that both 2¢, and 2¢, are odd integers.

Solution

Call a point (z,y) € Z? even or odd according to the parity of z + y. Since there are an odd
number of points, there are two points P; = (a,b) and Py = (¢,d), 0 < i < 1992 with the
same parity. This implies that a + b+ ¢ + d is even. We claim that the midpoint of PP, is
the desired point Q).

In fact, since a+b+c+d = (a+c)+ (b+d) is even, a and ¢ have the same parity if and only if
b and d also have the same parity. If both happen then the midpoint of P, P, Q = (“TJ“C, HTd),
has integer coordinates, which violates condition (ii). Then a and ¢, as well as b and d, have
different parities, and 2¢, = a + ¢ and 2¢q, = b + d are both odd integers.



