APMO 1994 — Problems and Solutions

Problem 1
Let f: R — R be a function such that

(i) For all z,y € R,
f@)+ fly) +1> flx+y) > flz)+ fly),

(ii) For all x € [0,1), f(0) > f(x),
(i) —f(~1) = £(1) = 1.

Find all such functions f.

Answer: f(z) = |z], the largest integer that does not exceed x, is the only function.

Solution
Plug y — 1 in (i):

f@)+ ) +1> fle+1) = fl2)+ f(1) <= fl@o)+1< flz+1) < f(z)+2.
Now plug y — —1 and  — = + 1 in (i):
fae+)+ (=D +1= f(z) 2 fle+ 1)+ f(-1) <= f(z) < fle+1) < f(z)+ 1L

Hence f(x + 1) = f(z) + 1 and we only need to define f(x) on [0,1). Note that f(1) =
F0)+1 = f(0) =0,

Condition (ii) states that f(z) <0 in [0,1).

Now plug y — 1 — z in (i):

f@)+fA-2)+1<fle+(1-2) < fl@)+f1-2) = fl2)+f(1-2) 20

If z € (0,1) then 1 — 2 € (0,1) as well, so f(z) < 0 and f(1 —z) < 0, which implies
f(z)+ f(1 —x) <0. Thus, f(z) = f(1 —z) =0 for z € (0,1). This combined with f(0) =0
and f(x + 1) = f(x) + 1 proves that f(z) = |x|, which satisfies the problem conditions, as
since

r+y=|z|+ |yl +{z}+{y}and 0 < {z} +{y} <2 = |z]+ |y <z+y<|z]+|y]+2

implies
o] + [yl + 1= [z +y] = [z] + [y].



Problem 2
Given a nondegenerate triangle ABC', with circumcentre O, orthocentre H, and circumradius
R, prove that |OH| < 3R.

Solution 1
Embed ABC' in the complex plane, with A, B and C' in the circle |z| = R, so O is the origin.
Represent each point by its lowercase letter. It is well known that h =a + b+ ¢, so

OH =la+b+c| < |a|+ |b| + |¢| = 3R.

The equality cannot occur because a, b, and ¢ are not collinear, so OH < 3R.

Solution 2
Suppose with loss of generality that ZA < 90°. Let BD be an altitude. Then

AD ABcos A
AH — B cos

— = =2 A.
cos(90° — () sin C ftcos

By the triangle inequality,

OH < AO+ AH = R+2Rcos A < 3R.

Comment: With a bit more work, if a, b, ¢ are the sidelengths of ABC', one can show that
OH? =9R* — a®> — > — &

In fact, using vectors in a coordinate system with O as origin, by the Euler line

—>
(ﬁ[:?)O?:S.OAJrO?jLO?:OﬁHO?Jr@.

SO

OH2207>[-07>[:(O_1>4+0?+045)-((74+0?+@)

Expanding and using the fact that OX -OX —=O0X2=R2for X € {A, B,C}, as well as

2 2
OA-OB = OA-OB-cos ZAOB = R cos 2C = R*(1-2sin* 0) = R? (1 -2 (é) ) = RQ—%,

we find that

OH?> = 0A-OA+OB-OB+0C-0C +204.-0B +204-0C +20B - OC
= 3R? + (2R* — &) + (2R* — b*) + (2R* — d?)
=9R? —a®> — b — &2,

as required.
This proves that OH? < 9R? = OH < 3R, and since a, b, ¢ can be arbitrarily small (fix the
circumcircle and choose A, B, C' arbitrarily close in this circle), the bound is sharp.



Problem 3
Let n be an integer of the form a? + b?, where a and b are relatively prime integers and such
that if p is a prime, p < y/n, then p divides ab. Determine all such n.

Answer: n = 2,5,13.

Solution

A prime p divides ab if and only if divides either a or b. If n = a® + b? is a composite then it
has a prime divisor p < /n, and if p divides a it divides b and vice-versa, which is not possible
because a and b are coprime. Therefore n is a prime.

Suppose without loss of generality that a > b and consider a—b. Note that a>+b? = (a—b)?+2ab.

e If a = b then a = b =1 because a and b are coprime. n = 2 is a solution.

e If a—b =1 then a and b are coprime and a*+b* = (a—b)*+2ab = 2ab+1 = 2b(b+1)+1 =
20% + 2b + 1. So any prime factor of any number smaller than /202 + 2b + 1 is a divisor
of ab="0b(b+1).

One can check that b = 1 and b = 2 yields the solutions n = 12 + 22 = 5 (the only prime
pis 2) and n = 2% + 32 = 13 (the only primes p are 2 and 3). Suppose that b > 2.

Consider, for instance, the prime factors of b — 1 < +/2b% + 2b + 1, which is coprime with
b. Any prime must then divide a = b+ 1. Then it divides (b+ 1) — (b — 1) = 2, that is,
b — 1 can only have 2 as a prime factor, that is, b — 1 is a power of 2, and since b — 1 > 2,

b is odd.

Since 20> +2b+1— (b+2)> =b0*—2b—3 = (b—3)(b+ 1) > 0, we can also consider any
prime divisor of b + 2. Since b is odd, b and b+ 2 are also coprime, so any prime divisor
of b4+ 2 must divide a = b+ 1. But b+ 1 and b+ 2 are also coprime, so there can be no
such primes. This is a contradiction, and b > 3 does not yield any solutions.

e If a — b > 1, consider a prime divisor p of a — b = Va? — 2ab + b*> < Va? + b2. Since p
divides one of a and b, p divides both numbers (just add or subtract a — b accordingly.)
This is a contradiction.

Hence the only solutions are n = 2,5, 13.



Problem 4
Is there an infinite set of points in the plane such that no three points are collinear, and the
distance between any two points is rational?

Answer: Yes.

Solution 1

The answer is yes and we present the following construction: the idea is considering points in
the unit circle of the form P, = (cos(2nf),sin(2nf)) for an appropriate . Then the distance
P,, P, is the length of the chord with central angle (2m — 2n)f mod =, that is, 2|sin((m —n)8)].
Our task is then finding 6 such that (i) sin(k#) is rational for all k € Z; (ii) points P, are all
distinct. We claim that 6 € (0,7/2) such that cos# = £ and therefore sinf = 2 does the job.
Proof of (i): We know that sin((n+ 1)) +sin((n — 1)8) = 2sin(n#) cos d, so if sin((n — 1)0 and
sin(nf) are both rational then sin((n + 1)0) also is. Since sin(0f) = 0 and sinf are rational,
an induction shows that sin(nf) is rational for n € Z-; the result is also true if n is negative
because sin is an odd function.

Proof of (ii): P,, = P, <= 2nf = 2mf + 2kr for some k € Z, which implies sin((n —m)0) =
sin(km) = 0. We show that sin(kf) # 0 for all k # 0.

We prove a stronger result: let sin(kf)) = g£. Then

Ap+1 | Q-1 ap 3

51@11 +5k71 :2'§'5

— Qg1 = 6ay — 25a,_1.

sin((k + 1)0) + sin((k — 1)8) = 2sin(kf) cos <~

Since ap = 0 and a; = 4, a; is an integer for k¥ > 0, and a1 = ax (mod 5) for £ > 1 (note
that a_; = —5¢ is not an integer!). Thus a; =4 (mod 5) for all k¥ > 1, and sin(kf) = % is an
irreducible fraction with 5* as denominator and a; = 4 (mod 5). This proves (ii) and we are

done.

Solution 2
We present a different construction. Consider the (collinear) points

P = (1ﬁ) ,
Yk

such that the distance O P, from the origin O,

op, = Y1k Yk ””%er’%,

Yk

is rational, and z; and y; are integers. Clearly, P, P; = ‘Z— — z—J
T J
Perform an inversion with center O and unit radius. It maps the line x = 1, which contains all

points Py, to a circle (minus the origin). Let @y be the image of P, under this inversion. Then

12P,P;

is rational.

is rational and we are done if we choose x; and y; accordingly. But this is not hard, as we can
choose the legs of a Pythagorean triple, say

[L’k:]{?2—1, ykZQk

This implies OP, = %, and then

-1 _ j2-1

] i22_;1 . 32;;1 (i2 + 1)(j2 + 1)




Problem 5

You are given three lists A, B, and C. List A contains the numbers of the form 10* in base
10, with k£ any integer greater than or equal to 1. Lists B and C contain the same numbers
translated into base 2 and 5 respectively:

A B C

10 1010 20
100 1100100 400
1000 1111101000 13000

Prove that for every integer n > 1, there is exactly one number in exactly one of the lists B or
C that has exactly n digits.

Solution
Let by and c¢; be the number of digits in the kth term in lists B and C respectively. Then

20l < 10F < 2% <= log, 10" < by <logy 10F +1 <= by = |k-log, 10| + 1
and, similarly
¢k = |k -logs 10| + 1.
Beatty’s theorem states that if & and [ are irrational positive numbers such that
1 1
> + E =1,
then the sequences |ka| and kS|, k = 1,2,..., partition the positive integers.

Then, since
1 1

_|_
log, 10 logs 10
the sequences by — 1 and ¢, — 1 partition the positive integers, and therefore each integer greater
than 1 appears in by or ¢i exactly once. We are done.

= logy 2 +logyp 5 = log;(2-5) =1,

Comment: For the sake of completeness, a proof of Beatty’s theorem follows.
Let x, = an and y, = #n, n > 1 integer. Note that, since am = n implies that % is rational

but ) )
(8%
B p ( Oé)

is irrational, the sequences have no common terms, and all terms in both sequences are irra-
tional.

The theorem is equivalent to proving that exactly one term of either z,, of y, lies in the interval
(N,N + 1) for each N positive integer. For that purpose we count the number of terms of
the union of the two sequences in the interval (0, N): since na < N <= n < %, there are
[%J terms of x,, in the interval and, similarly, {%J terms of g, in the same interval. Since the

sequences are disjoint, the total of numbers is

=[] 3]

However, © — 1 < |z| < x for nonintegers z, so
N N N N 1 1 1 1
——1+—=—-1<T(N)< —+— <= N|—+ 5| —2<T(N)<N|—++
S R S R O I ELI €23 )
< N—-2<T(N) <N,
that is, T(N) = N — 1.
Therefore the number of terms in (N, N +1) is T(N +1) —=T(N) =N — (N — 1) = 1, and the
result follows.



