
APMO 1994 – Problems and Solutions

Problem 1
Let f : R→ R be a function such that

(i) For all x, y ∈ R,
f(x) + f(y) + 1 ≥ f(x+ y) ≥ f(x) + f(y),

(ii) For all x ∈ [0, 1), f(0) ≥ f(x),

(iii) −f(−1) = f(1) = 1.

Find all such functions f .

Answer: f(x) = bxc, the largest integer that does not exceed x, is the only function.

Solution
Plug y → 1 in (i):

f(x) + f(1) + 1 ≥ f(x+ 1) ≥ f(x) + f(1) ⇐⇒ f(x) + 1 ≤ f(x+ 1) ≤ f(x) + 2.

Now plug y → −1 and x→ x+ 1 in (i):

f(x+ 1) + f(−1) + 1 ≥ f(x) ≥ f(x+ 1) + f(−1) ⇐⇒ f(x) ≤ f(x+ 1) ≤ f(x) + 1.

Hence f(x + 1) = f(x) + 1 and we only need to define f(x) on [0, 1). Note that f(1) =
f(0) + 1 =⇒ f(0) = 0.
Condition (ii) states that f(x) ≤ 0 in [0, 1).
Now plug y → 1− x in (i):

f(x) + f(1− x) + 1 ≤ f(x+ (1− x)) ≤ f(x) + f(1− x) =⇒ f(x) + f(1− x) ≥ 0.

If x ∈ (0, 1) then 1 − x ∈ (0, 1) as well, so f(x) ≤ 0 and f(1 − x) ≤ 0, which implies
f(x) + f(1 − x) ≤ 0. Thus, f(x) = f(1 − x) = 0 for x ∈ (0, 1). This combined with f(0) = 0
and f(x + 1) = f(x) + 1 proves that f(x) = bxc, which satisfies the problem conditions, as
since

x+ y = bxc+ byc+ {x}+ {y} and 0 ≤ {x}+ {y} < 2 =⇒ bxc+ byc ≤ x+ y < bxc+ byc+ 2

implies
bxc+ byc+ 1 ≥ bx+ yc ≥ bxc+ byc.
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Problem 2
Given a nondegenerate triangle ABC, with circumcentre O, orthocentre H, and circumradius
R, prove that |OH| < 3R.

Solution 1
Embed ABC in the complex plane, with A, B and C in the circle |z| = R, so O is the origin.
Represent each point by its lowercase letter. It is well known that h = a+ b+ c, so

OH = |a+ b+ c| ≤ |a|+ |b|+ |c| = 3R.

The equality cannot occur because a, b, and c are not collinear, so OH < 3R.

Solution 2
Suppose with loss of generality that ∠A < 90◦. Let BD be an altitude. Then

AH =
AD

cos(90◦ − C)
=
AB cosA

sinC
= 2R cosA.

By the triangle inequality,

OH < AO + AH = R + 2R cosA < 3R.

Comment: With a bit more work, if a, b, c are the sidelengths of ABC, one can show that

OH2 = 9R2 − a2 − b2 − c2.

In fact, using vectors in a coordinate system with O as origin, by the Euler line

−−→
OH = 3

−→
OG = 3 ·

−→
OA+

−−→
OB +

−→
OC

3
=
−→
OA+

−−→
OB +

−→
OC.

so
OH2 =

−−→
OH ·

−−→
OH = (

−→
OA+

−−→
OB +

−→
OC) · (

−→
OA+

−−→
OB +

−→
OC)

Expanding and using the fact that
−−→
OX ·

−−→
OX = OX2 = R2 for X ∈ {A,B,C}, as well as

−→
OA·
−−→
OB = OA·OB ·cos∠AOB = R2 cos 2C = R2(1−2 sin2C) = R2

(
1− 2

( c

2R

)2)
= R2− c

2

2
,

we find that

OH2 =
−→
OA ·

−→
OA+

−−→
OB ·

−−→
OB +

−→
OC ·

−→
OC + 2

−→
OA ·

−−→
OB + 2

−→
OA ·

−→
OC + 2

−−→
OB ·

−→
OC

= 3R2 + (2R2 − c2) + (2R2 − b2) + (2R2 − a2)
= 9R2 − a2 − b2 − c2,

as required.
This proves that OH2 < 9R2 =⇒ OH < 3R, and since a, b, c can be arbitrarily small (fix the
circumcircle and choose A,B,C arbitrarily close in this circle), the bound is sharp.
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Problem 3
Let n be an integer of the form a2 + b2, where a and b are relatively prime integers and such
that if p is a prime, p ≤

√
n, then p divides ab. Determine all such n.

Answer: n = 2, 5, 13.

Solution
A prime p divides ab if and only if divides either a or b. If n = a2 + b2 is a composite then it
has a prime divisor p ≤

√
n, and if p divides a it divides b and vice-versa, which is not possible

because a and b are coprime. Therefore n is a prime.
Suppose without loss of generality that a ≥ b and consider a−b. Note that a2+b2 = (a−b)2+2ab.

� If a = b then a = b = 1 because a and b are coprime. n = 2 is a solution.

� If a−b = 1 then a and b are coprime and a2+b2 = (a−b)2+2ab = 2ab+1 = 2b(b+1)+1 =
2b2 + 2b + 1. So any prime factor of any number smaller than

√
2b2 + 2b+ 1 is a divisor

of ab = b(b+ 1).

One can check that b = 1 and b = 2 yields the solutions n = 12 + 22 = 5 (the only prime
p is 2) and n = 22 + 32 = 13 (the only primes p are 2 and 3). Suppose that b > 2.

Consider, for instance, the prime factors of b− 1 ≤
√

2b2 + 2b+ 1, which is coprime with
b. Any prime must then divide a = b + 1. Then it divides (b + 1)− (b− 1) = 2, that is,
b− 1 can only have 2 as a prime factor, that is, b− 1 is a power of 2, and since b− 1 ≥ 2,
b is odd.

Since 2b2 + 2b+ 1− (b+ 2)2 = b2 − 2b− 3 = (b− 3)(b+ 1) ≥ 0, we can also consider any
prime divisor of b+ 2. Since b is odd, b and b+ 2 are also coprime, so any prime divisor
of b+ 2 must divide a = b+ 1. But b+ 1 and b+ 2 are also coprime, so there can be no
such primes. This is a contradiction, and b ≥ 3 does not yield any solutions.

� If a − b > 1, consider a prime divisor p of a − b =
√
a2 − 2ab+ b2 <

√
a2 + b2. Since p

divides one of a and b, p divides both numbers (just add or subtract a − b accordingly.)
This is a contradiction.

Hence the only solutions are n = 2, 5, 13.
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Problem 4
Is there an infinite set of points in the plane such that no three points are collinear, and the
distance between any two points is rational?

Answer: Yes.

Solution 1
The answer is yes and we present the following construction: the idea is considering points in
the unit circle of the form Pn = (cos(2nθ), sin(2nθ)) for an appropriate θ. Then the distance
PmPn is the length of the chord with central angle (2m−2n)θ mod π, that is, 2| sin((m−n)θ)|.
Our task is then finding θ such that (i) sin(kθ) is rational for all k ∈ Z; (ii) points Pn are all
distinct. We claim that θ ∈ (0, π/2) such that cos θ = 3

5
and therefore sin θ = 4

5
does the job.

Proof of (i): We know that sin((n+ 1)θ) + sin((n− 1)θ) = 2 sin(nθ) cos θ, so if sin((n− 1)θ and
sin(nθ) are both rational then sin((n + 1)θ) also is. Since sin(0θ) = 0 and sin θ are rational,
an induction shows that sin(nθ) is rational for n ∈ Z>0; the result is also true if n is negative
because sin is an odd function.

Proof of (ii): Pm = Pn ⇐⇒ 2nθ = 2mθ+ 2kπ for some k ∈ Z, which implies sin((n−m)θ) =
sin(kπ) = 0. We show that sin(kθ) 6= 0 for all k 6= 0.
We prove a stronger result: let sin(kθ) = ak

5k
. Then

sin((k + 1)θ) + sin((k − 1)θ) = 2 sin(kθ) cos θ ⇐⇒ ak+1

5k+1
+
ak−1

5k−1
= 2 · ak

5k
· 3

5
⇐⇒ ak+1 = 6ak − 25ak−1.

Since a0 = 0 and a1 = 4, ak is an integer for k ≥ 0, and ak+1 ≡ ak (mod 5) for k ≥ 1 (note
that a−1 = − 4

25
is not an integer!). Thus ak ≡ 4 (mod 5) for all k ≥ 1, and sin(kθ) = ak

5k
is an

irreducible fraction with 5k as denominator and ak ≡ 4 (mod 5). This proves (ii) and we are
done.

Solution 2
We present a different construction. Consider the (collinear) points

Pk =

(
1,
xk
yk

)
,

such that the distance OPk from the origin O,

OPk =

√
x2k + y2k
yk

,

is rational, and xk and yk are integers. Clearly, PiPj =
∣∣∣xiyi − xj

yj

∣∣∣ is rational.

Perform an inversion with center O and unit radius. It maps the line x = 1, which contains all
points Pk, to a circle (minus the origin). Let Qk be the image of Pk under this inversion. Then

QiQj =
12PiPj

OPi ·OPj
is rational and we are done if we choose xk and yk accordingly. But this is not hard, as we can
choose the legs of a Pythagorean triple, say

xk = k2 − 1, yk = 2k.

This implies OPk = k2+1
2k

, and then

QiQj =

∣∣∣ i2−1
i
− j2−1

j

∣∣∣
i2+1
2i
· j2+1

2j

=
|4(i− j)(ij + 1)|
(i2 + 1)(j2 + 1)

.
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Problem 5
You are given three lists A, B, and C. List A contains the numbers of the form 10k in base
10, with k any integer greater than or equal to 1. Lists B and C contain the same numbers
translated into base 2 and 5 respectively:

A B C
10 1010 20
100 1100100 400
1000 1111101000 13000
...

...
...

Prove that for every integer n > 1, there is exactly one number in exactly one of the lists B or
C that has exactly n digits.

Solution
Let bk and ck be the number of digits in the kth term in lists B and C, respectively. Then

2bk−1 ≤ 10k < 2bk ⇐⇒ log2 10k < bk ≤ log2 10k + 1 ⇐⇒ bk = bk · log2 10c+ 1

and, similarly
ck = bk · log5 10c+ 1.

Beatty’s theorem states that if α and β are irrational positive numbers such that

1

α
+

1

β
= 1,

then the sequences bkαc and bkβc, k = 1, 2, . . ., partition the positive integers.
Then, since

1

log2 10
+

1

log5 10
= log10 2 + log10 5 = log10(2 · 5) = 1,

the sequences bk−1 and ck−1 partition the positive integers, and therefore each integer greater
than 1 appears in bk or ck exactly once. We are done.

Comment: For the sake of completeness, a proof of Beatty’s theorem follows.
Let xn = αn and yn = βn, n ≥ 1 integer. Note that, since αm = βn implies that α

β
is rational

but
α

β
= α · 1

β
= α

(
1− 1

α

)
= α− 1

is irrational, the sequences have no common terms, and all terms in both sequences are irra-
tional.
The theorem is equivalent to proving that exactly one term of either xn of yn lies in the interval
(N,N + 1) for each N positive integer. For that purpose we count the number of terms of
the union of the two sequences in the interval (0, N): since nα < N ⇐⇒ n < N

α
, there are⌊

N
α

⌋
terms of xn in the interval and, similarly,

⌊
N
β

⌋
terms of yn in the same interval. Since the

sequences are disjoint, the total of numbers is

T (N) =

⌊
N

α

⌋
+

⌊
N

β

⌋
.

However, x− 1 < bxc < x for nonintegers x, so

N

α
− 1 +

N

β
− 1 < T (N) <

N

α
+
N

β
⇐⇒ N

(
1

α
+

1

β

)
− 2 < T (N) < N

(
1

α
+

1

β

)
⇐⇒ N − 2 < T (N) < N,

that is, T (N) = N − 1.
Therefore the number of terms in (N,N + 1) is T (N + 1)− T (N) = N − (N − 1) = 1, and the
result follows.
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