
APMO 2000 – Problems and Solutions

Problem 1
Compute the sum S =

∑101
i=0

x3
i

1−3xi+3x2
i

for xi = i
101

.

Answer: S = 51.

Solution
Since x101−i = 101−i

101
= 1− i

101
= 1− xi and

1− 3xi + 3x2
i = (1− 3xi + 3x2

i − x3
i ) + x3

i = (1− xi)
3 + x3

i = x3
101−i + x3

i ,

we have, by replacing i by 101− i in the second sum,

2S = S + S =
101∑
i=0

x3
i

x3
101−i + x3

i

+
101∑
i=0

x3
101−i

x3
i + x3

101−i

=
101∑
i=0

x3
i + x3

101−i

x3
101−i + x3

i

= 102,

so S = 51.

1



Problem 2
Given the following arrangement of circles:

Each of the numbers 1, 2, . . . , 9 is to be written into one of these circles, so that each circle
contains exactly one of these numbers and

(i) the sums of the four numbers on each side of the triangle are equal;

(ii) the sums of squares of the four numbers on each side of the triangle are equal.

Find all ways in which this can be done.

Answer: The only solutions are

2 4 9 5

3

7

8

1

6

and the ones generated by permuting the vertices, adjusting sides and exchanging the two
middle numbers on each side.

Solution
Let a, b, and c be the numbers in the vertices of the triangular arrangement. Let s be the
sum of the numbers on each side and t be the sum of the squares of the numbers on each side.
Summing the numbers (or their squares) on the three sides repeats each once the numbers on
the vertices (or their squares):

3s = a + b + c + (1 + 2 + · · ·+ 9) = a + b + c + 45

3t = a2 + b2 + c2 + (12 + 22 + · · ·+ 92) = a2 + b2 + c2 + 285

At any rate, a + b + c and a2 + b2 + c2 are both multiples of 3. Since x2 ≡ 0, 1 (mod 3),
either a, b, c are all multiples of 3 or none is a multiple of 3. If two of them are 1, 2 mod 3 then
a + b + c ≡ 0 (mod 3) implies that the other should be a multiple of 3, which is not possible.
Thus a, b, c are all congruent modulo 3, that is,

{a, b, c} = {3, 6, 9}, {1, 4, 7}, or {2, 5, 8}.

Case 1: {a,b,c} = {3,6,9}. Then 3t = 32 + 62 + 92 + 285 ⇐⇒ t = 137.

3 6

x

y
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In this case x2 + y2 + 32 + 92 = 137 ⇐⇒ x2 + y2 = 47. However, 47 cannot be written as
the sum of two squares. One can check manually, or realize that 47 ≡ 3 (mod 4), and since
x2, y2 ≡ 0, 1 (mod 4), x2 + y2 ≡ 0, 1, 2 (mod 4) cannot be 47.
Hence there are no solutions in this case.

Case 2: {a,b,c} = {1,4,7}. Then 3t = 12 + 42 + 72 + 285 ⇐⇒ t = 117.

1 4

x

y

7

In this case x2 + y2 + 12 + 72 = 117 ⇐⇒ x2 + y2 = 67 ≡ 3 (mod 4), and as in the previous
case there are no solutions.

Case 3: {a, b, c} = {2, 5, 8}. Then 3t = 22 + 52 + 82 + 285 ⇐⇒ t = 126.

2 t u 5

x

y

8

m

n

Then 
x2 + y2 + 22 + 82 = 126
t2 + u2 + 22 + 52 = 126
m2 + n2 + 52 + 82 = 126

⇐⇒


x2 + y2 = 58
t2 + u2 = 97
m2 + n2 = 37

The only solutions to t2 + u2 = 97 and m2 + n2 = 37 are {t, u} = {4, 9} and {m,n} = {1, 6},
respectively (again, one can check manually.) Then {x, y} = {3, 7}, and the solutions are

2 4 9 5

3

7

8

1

6

and the ones generated by permuting the vertices, adjusting sides and exchanging the two
middle numbers on each side. There are 3! · 23 = 48 such solutions.

3



Problem 3
Let ABC be a triangle. Let M and N be the points in which the median and angle bisector,
respectively, at A meet the side BC. Let Q and P be the points in which the perpendicular at
N to NA meets MA and BA, respectively, and O be the point in which the perpendicular at
P to BA meets AN produced. Prove that QO is perpendicular to BC.

Solution 1
Let AN meet the circumcircle of ABC at point K, the midpoint of arc BC that does not
contain A.

A

B C
N

O

K

M

Q

P

S

R

The orthogonal projection of K onto side BC is M . Let R and S be the orthogonal projections
of K onto lines AB and AC, respectively. Points R, M , and S lie in the Simson line of K with
respect to ABC. Since K is in the bisector of ∠BAC, ARKS is a kite, and the Simson line
RMS is perpendicular to AN , and therefore parallel to PQ.
Now consider the homothety with center A that takes O to K. Since OP ⊥ AB and KR ⊥ AB,
OP and KR are parallel, which means that P is taken to R. Finally, line PQ is parallel to line
RS, so line PQ is taken to line RS by the homothety. Then Q is taken to M , and since O is
taken to K, line OQ is taken to line MK. We are done now: this means that OQ is parallel
to MK, which is perpendicular to BC (it is its perpendicular bisector, as MB = MC and
KB = KC.)

Solution 2
Consider a cartesian plane with A = (0, 0) as the origin and the bisector AN as x-axis. Thus
AB has equation y = mx and AC has equation y = −mx. Let B = (b,mb) and C = (c,−mc).
By symmetry, the problem is immediate if AB = AC, that is, if b = c. Suppose that b 6= c
from now on. Line BC has slope mb−(−mc)

b−c
= m(b+c)

b−c
. Let N = (n, 0).

Point M is the midpoint
(
b+c
2
, mb−mc

2

)
of BC, so AM has slope m(b−c)

b+c
.

The line through N that is perpendicular to the x-axis AN is x = n. Therefore

P = (n,mn) and Q =

(
n,

m(b− c)n

b + c

)
.

In the right triangle APO, with altitude AN , AN · AO = AP 2. Thus

n · AO = (0− n)2 + (0−mn)2 ⇐⇒ AO = n(m2 + 1) =⇒ O = (n(m2 + 1), 0).

Finally, the slope of OQ is
m(b−c)n

b+c
− 0

n− n(m2 + 1)
= − b− c

(b + c)m
.
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Since the product of the slopes of OQ and BC is

− b− c

(b + c)m
· m(b + c)

b− c
= −1,

OQ and BC are perpendicular, and we are done.

Comment: The second solution shows that N can be any point in the bisector of ∠A. In fact,
if we move N in the bisector and construct O, P and Q accordingly, then all lines OQ obtained
are parallel: just consider a homothety with center A and variable ratios.
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Problem 4
Let n, k be given positive integers with n > k. Prove that

1

n + 1
· nn

kk(n− k)n−k
<

n!

k! (n− k)!
<

nn

kk(n− k)n−k
.

Solution
The inequality is equivalent to

nn

n + 1
<

(
n

k

)
kk(n− k)n−k < nn,

which suggests investigating the binomial expansion of

nn = ((n− k) + k)n =
n∑

i=0

(
n

i

)
(n− k)n−iki.

The (k + 1)th term Tk+1 of the expansion is
(
n
k

)
kk(n − k)n−k, and all terms in the expansion

are positive, which implies the right inequality.
Now, for 1 ≤ i ≤ n,

Ti+1

Ti

=

(
n
i

)
(n− k)n−iki(

n
i−1

)
(n− k)n−i+1ki−1

=
(n− i + 1)k

i(n− k)
,

and
Ti+1

Ti

> 1 ⇐⇒ (n− i + 1)k > i(n− k) ⇐⇒ i < k +
k

n
⇐⇒ i ≤ k.

This means that
T1 < T2 < · · · < Tk+1 > Tk+2 > · · · > Tn+1,

that is, Tk+1 =
(
n
k

)
kk(n − k)n−k is the largest term in the expansion. The maximum term is

greater that the average, which is the sum nn divided by the quantity n + 1, therefore(
n

k

)
kk(n− k)n−k >

nn

n + 1
,

as required.

Comment: If we divide further by nn one finds

1

n + 1
<

(
n

k

)(
k

n

)k (
1− k

n

)n−k

< 1.

The middle term is the probability P (X = k) of k successes in a binomial distribution with
n trials and success probability p = k

n
. The right inequality is immediate from the fact that

P (X = k) is not the only possible event in this distribution, and the left inequality comes from
the fact that the mode of the binomial distribution are given by b(n + 1)pc = b(n + 1) k

n
c = k

and d(n + 1)p− 1e = k. However, the proof of this fact is identical to the above solution.
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Problem 5
Given a permutation (a0, a1, . . . , an) of the sequence 0, 1, . . . , n. A transposition of ai with aj
is called legal if ai = 0 for i > 0, and ai−1 + 1 = aj. The permutation (a0, a1, . . . , an) is called
regular if after a number of legal transpositions it becomes (1, 2, . . . , n, 0). For which numbers
n is the permutation (1, n, n− 1, . . . , 3, 2, 0) regular?

Answer: n = 2 and n = 2k − 1, k positive integer.

Solution
A legal transposition consists of looking at the number immediately before 0 and exchanging 0
and its successor; therefore, we can perform at most one legal transposition to any permutation,
and a legal transposition is not possible only and if only 0 is preceded by n.
If n = 1 or n = 2 there is nothing to do, so n = 1 = 21 − 1 and n = 2 are solutions. Suppose
that n > 3 in the following.
Call a pass a maximal sequence of legal transpositions that move 0 to the left. We first illustrate
what happens in the case n = 15, which is large enough to visualize what is going on. The first
pass is

(1, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4,3, 2, 0)

(1, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,5, 4, 0, 2, 3)

(1, 15, 14, 13, 12, 11, 10, 9, 8,7, 6, 0, 4, 5, 2, 3)

(1, 15, 14, 13, 12, 11, 10,9, 8, 0, 6, 7, 4, 5, 2, 3)

(1, 15, 14, 13, 12,11, 10, 0, 8, 9, 6, 7, 4, 5, 2, 3)

(1, 15, 14,13, 12, 0, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3)

(1,15, 14, 0, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3)

(1, 0, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3)

After exchanging 0 and 2, the second pass is

(1, 2, 14, 15, 12, 13, 10, 11, 8, 9,6, 7, 4, 5, 0, 3)

(1, 2, 14, 15, 12, 13,10, 11, 8, 9, 0, 7, 4, 5, 6, 3)

(1, 2,14, 15, 12, 13, 0, 11, 8, 9, 10, 7, 4, 5, 6, 3)

(1, 2, 0, 15, 12, 13, 14, 11, 8, 9, 10, 7, 4, 5, 6, 3)

After exchanging 0 and 3, the third pass is

(1, 2, 3, 15, 12, 13, 14, 11, 8, 9, 10,7, 4, 5, 6, 0)

(1, 2, 3, 15, 12, 13, 14,11, 8, 9, 10, 0, 4, 5, 6, 7)

(1, 2, 3,15, 12, 13, 14, 0, 8, 9, 10, 11, 4, 5, 6, 7)

(1, 2, 3, 0, 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7)

After exchanging 0 and 4, the fourth pass is

(1, 2, 3, 4,12, 13, 14, 15, 8, 9, 10, 11, 0, 5, 6, 7)

(1, 2, 3, 4, 0, 13, 14, 15, 8, 9, 10, 11, 12, 5, 6, 7)

And then one can successively perform the operations to eventually find

(1, 2, 3, 4, 5, 6, 7, 0, 8, 9, 10, 11, 12, 13, 14, 15)

after which 0 will move one unit to the right with each transposition, and n = 15 is a solution.
The general case follows.
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Case 1: n > 2 even: After the first pass, in which 0 is transposed successively with 3, 5, . . . , n−1,
after which 0 is right after n, and no other legal transposition can be performed. So n is not a
solution in this case.

Case 2: n = 2k−1: Denote N = n+1, R = 2r, [a : b] = (a, a+1, a+2, . . . , b), and concatenation
by a comma. Let Pr be the permutation

[1 : R− 1], (0), [N −R : N − 1], [N − 2R : N −R− 1], . . . , [2R : 3R− 1], [R : 2R− 1]

Pr is formed by the blocks [1 : R − 1], (0), and other 2k−r − 1 blocks of size R = 2r with
consecutive numbers, beginning with tR and finishing with (t+ 1)R− 1, in decreasing order of
t. Also define P0 as the initial permutation.
Then it can be verified that Pr+1 is obtained from Pr after a number of legal transpositions: it
can be easily verified that P0 leads to P1, as 0 is transposed successively with 3, 5, . . . , n − 1,
shifting cyclically all numbers with even indices; this is P1.
Starting from Pr, r > 0, 0 is successively transposed with R, 3R, . . . , N − R. The numbers
0, N − R,N − 3R, . . . , 3R,R are cyclically shifted. This means that R precedes 0, and the
blocks become

[1 : R], (0), [N −R + 1 : N − 1], [N − 2R : N −R], [N − 3R + 1 : N − 2R− 1], . . . ,

[3R + 1 : 4R− 1], [2R : 3R], [R + 1 : 2R− 1]

Note that the first block and the ones on even positions greater than 2 have one more number
and the other blocks have one less number.
Now 0, N −R + 1, N − 3R + 1, . . . , 3R + 1, R + 1 are shifted. Note that, for every ith block, i
odd greater than 1, the first number is cyclically shifted, and the blocks become

[1 : R + 1], (0), [N −R + 2 : N − 1], [N − 2R : N −R + 1], [N − 3R + 2 : N − 2R− 1], . . . ,

[3R + 1 : 4R− 1], [2R : 3R + 1], [R + 2 : 2R− 1]

The same phenomenom happened: the first block and the ones on even positions greater than
2 have one more number and the other blocks have one less number. This pattern continues:
0, N −R + u,N − 3R + u, . . . , R + u are shifted, u = 0, 1, 2, . . . , R− 1, the first block and the
ones on even positions greater than 2 have one more number and the other blocks have one less
number, until they vanish. We finish with

[1 : 2R− 1], (0), [N − 2R : N − 1], . . . , [2R : 4R− 1],

which is precisely Pr+1.
Since Pk = [1 : N − 1], (0), n = 2k − 1 is a solution.
Case 3: n is odd, but is not of the form 2k − 1. Write n + 1 as n + 1 = 2a(2b + 1), b ≥ 1, and
define P0, . . . , Pa as in the previous case. Since 2a divides N = n+ 1, the same rules apply, and
we obtain Pa:

[1 : 2a − 1], (0), [N − 2a : N − 1], [N − 2a+1 : N − 2a − 1], . . . , [2a+1 : 3 · 2a − 1], [2a : 2a+1 − 1].

But then 0 is transposed with 2a, 3 · 2a, . . . , (2b − 1) · 2a = N − 2a+1, after which 0 is put
immediately after N − 1 = n, and cannot be transposed again. Therefore, n is not a solution.
All cases were studied, and so we are done.

Comment: The general problem of finding the number of regular permutations for any n seems
to be difficult. A computer finds the first few values

1, 2, 5, 14, 47, 189, 891, 4815, 29547,

which is not catalogued at oeis.org.
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https://oeis.org/search?q=1%2C2%2C5%2C14%2C47%2C189%2C891%2C4815%2C29547

