
Solutions of APMO 2019

Problem 1. Let Z+ be the set of positive integers. Determine all functions f : Z+ → Z+

such that a2 + f(a)f(b) is divisible by f(a) + b for all positive integers a and b.

Answer: The answer is f(n) = n for all positive integers n.
Clearly, f(n) = n for all n ∈ Z+ satisfies the original relation. We show some possible

approaches to prove that this is the only possible function.

Solution. First we perform the following substitutions on the original relation:

1. With a = b = 1, we find that f(1) + 1 | f(1)2 + 1, which implies f(1) = 1.

2. With a = 1, we find that b+ 1 | f(b) + 1. In particular, b ≤ f(b) for all b ∈ Z+.

3. With b = 1, we find that f(a) + 1 | a2 + f(a), and thus f(a) + 1 | a2 − 1. In particular,
f(a) ≤ a2 − 2 for all a ≥ 2.

Now, let p be any odd prime. Substituting a = p and b = f(p) in the original relation, we
find that 2f(p)|p2 + f(p)f(f(p)). Therefore, f(p)|p2. Hence the possible values of f(p) are 1, p
and p2. By (2) above, f(p) ≥ p and by (3) above f(p) ≤ p2 − 2. So f(p) = p for all primes p.

Substituting a = p into the original relation, we find that b+ p | p2 + pf(b). However, since
(b+ p)(f(b) + p− b) = p2 − b2 + bf(b) + pf(b), we have b+ p | bf(b)− b2. Thus, for any fixed b
this holds for arbitrarily large primes p and therefore we must have bf(b)− b2 = 0, or f(b) = b,
as desired.

Solution 2: As above, we have relations (1)-(3). In (2) and (3), for b = 2 we have 3|f(2)+1
and f(2) + 1|3. These imply f(2) = 2.

Now, using a = 2 we get 2 + b|4 + 2f(b). Let f(b) = x. We have

1 + x ≡ 0 (mod b+ 1)

4 + 2x ≡ 0 (mod b+ 2).

From the first equation x ≡ b (mod b+ 1) so x = b+ (b+ 1)t for some integer t ≥ 0. Then

0 ≡ 4 + 2x ≡ 4 + 2(b+ (b+ 1)t) ≡ 4 + 2(−2− t) ≡ −2t (mod b+ 2).

Also t ≤ b− 2 because 1 + x|b2 − 1 by (3).
If b+ 2 is odd, then t ≡ 0 (mod b+ 2). Then t = 0, which implies f(b) = b.
If b + 2 is even, then t ≡ 0 (mod (b + 2)/2). Then t = 0 or t = (b + 2)/2. But if t 6= 0,

then by definition (b + 4)/2 = (1 + t) = (x + 1)/(b + 1) and since x + 1|b2 − 1, then (b + 4)/2
divides b− 1. Therefore b+ 4|10 and the only possibility is b = 6. So for even b, b 6= 6 we have
f(b) = b.

Finally, by (2) and (3), for b = 6 we have 7|f(6) + 1 and f(6) + 1|35. This means f(6) = 6
or f(6) = 34. The later is discarded as, for a = 5, b = 6, we have by the original equation that
11|5(5 + f(6)). Therefore f(n) = n for every positive integer n.

Solution 3: We proceed by induction. As in Solution 1, we have f(1) = 1. Suppose that
f(n− 1) = n− 1 for some integer n ≥ 2.

With the substitution a = n and b = n − 1 in the original relation we obtain that f(n) +
n− 1|n2 + f(n)(n− 1). Since f(n) + n− 1|(n− 1)(f(n) + n− 1), then f(n) + n− 1|2n− 1.

With the substitution a = n − 1 and b = n in the original relation we obtain that 2n −
1|(n − 1)2 + (n − 1)f(n) = (n − 1)(n − 1 + f(n)). Since (2n − 1, n − 1) = 1, we deduce that
2n− 1|f(n) + n− 1.
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Therefore, f(n) + n− 1 = 2n− 1, which implies the desired f(n) = n.

Problem 2. Let m be a fixed positive integer. The infinite sequence {an}n≥1 is defined in
the following way: a1 is a positive integer, and for every integer n ≥ 1 we have

an+1 =

{
a2n + 2m if an < 2m

an/2 if an ≥ 2m.

For each m, determine all possible values of a1 such that every term in the sequence is an
integer.

Answer: The only value of m for which valid values of a1 exist is m = 2. In that case, the
only solutions are a1 = 2` for ` ≥ 1.

Solution. Suppose that for integers m and a1 all the terms of the sequence are integers.
For each i ≥ 1, write the ith term of the sequence as ai = bi2

ci where bi is the largest odd
divisor of ai (the “odd part” of ai) and ci is a nonnegative integer.

Lemma 1. The sequence b1, b2, . . . is bounded above by 2m.

Proof. Suppose this is not the case and take an index i for which bi > 2m and for which ci is
minimal. Since ai ≥ bi > 2m, we are in the second case of the recursion. Therefore, ai+1 = ai/2
and thus bi+1 = bi > 2m and ci+1 = ci − 1 < ci. This contradicts the minimality of ci.

Lemma 2. The sequence b1, b2, . . . is nondecreasing.

Proof. If ai ≥ 2m, then ai+1 = ai/2 and thus bi+1 = bi. On the other hand, if ai < 2m, then

ai+1 = a2i + 2m = b2i 2
2ci + 2m,

and we have the following cases:

• If 2ci > m, then ai+1 = 2m(b2i 2
2ci−m + 1), so bi+1 = b2i 2

2ci−m + 1 > bi.

• If 2ci < m, then ai+1 = 22ci(b2i + 2m−2ci), so bi+1 = b2i + 2m−2ci > bi.

• If 2ci = m, then ai+1 = 2m+1 · b
2
i+1

2
, so bi+1 = (b2i + 1)/2 ≥ bi since b2i + 1 ≡ 2 (mod 4).

By combining these two lemmas we obtain that the sequence b1, b2, . . . is eventually constant.
Fix an index j such that bk = bj for all k ≥ j. Since an descends to an/2 whenever an ≥ 2m,
there are infinitely many terms which are smaller than 2m. Thus, we can choose an i > j such
that ai < 2m. From the proof of Lemma 2, ai < 2m and bi+1 = bi can happen simultaneously
only when 2ci = m and bi+1 = bi = 1. By Lemma 2, the sequence b1, b2, . . . is constantly 1 and
thus a1, a2, . . . are all powers of two. Tracing the sequence starting from ai = 2ci = 2m/2 < 2m,

2m/2 → 2m+1 → 2m → 2m−1 → 22m−2 + 2m.

Note that this last term is a power of two if and only if 2m− 2 = m. This implies that m
must be equal to 2. When m = 2 and a1 = 2` for ` ≥ 1 the sequence eventually cycles through
2, 8, 4, 2, . . .. When m = 2 and a1 = 1 the sequence fails as the first terms are 1, 5, 5/2.

Solution 2: Let m be a positive integer and suppose that {an} consists only of positive
integers. Call a number small if it is smaller than 2m and large otherwise. By the recursion,
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after a small number we have a large one and after a large one we successively divide by 2 until
we get a small one.

First, we note that {an} is bounded. Indeed, a1 turns into a small number after a finite
number of steps. After this point, each small number is smaller than 2m, so each large number
is smaller than 22m + 2m. Now, since {an} is bounded and consists only of positive integers, it
is eventually periodic. We focus only on the cycle.

Any small number an in the cycle can be writen as a/2 for a large, so an ≥ 2m−1, then
an+1 ≥ 22m−2 + 2m = 2m−2(4 + 2m), so we have to divide an+1 at least m− 1 times by 2 until
we get a small number. This means that an+m = (a2n + 2m)/2m−1, so 2m−1|a2n, and therefore
2d(m−1)/2e | an for any small number an in the cycle. On the other hand, an ≤ 2m − 1, so
an+1 ≤ 22m − 2m+1 + 1 + 2m ≤ 2m(2m − 1), so we have to divide an+1 at most m times by
two until we get a small number. This means that after an, the next small number is either
N = am+n = (a2n/2

m−1) + 2 or am+n+1 = N/2. In any case, 2d(m−1)/2e divides N .
If m is odd, then x2 ≡ −2 (mod 2d(m−1)/2e) has a solution x = an/2

(m−1)/2. If (m− 1)/2 ≥
2 ⇐⇒ m ≥ 5 then x2 ≡ −2 (mod 4), which has no solution. So if m is odd, then m ≤ 3.

If m is even, then 2m−1 | a2n =⇒ 2d(m−1)/2e | an ⇐⇒ 2m/2 | an. Then if an = 2m/2x,
2x2 ≡ −2 (mod 2m/2) ⇐⇒ x2 ≡ −1 (mod 2(m/2)−1), which is not possible for m ≥ 6. So if m
is even, then m ≤ 4.

The cases m = 1, 2, 3, 4 are handed manually, checking the possible small numbers in the
cycle, which have to be in the interval [2m−1, 2m) and be divisible by 2d(m−1)/2e:

• For m = 1, the only small number is 1, which leads to 5, then 5/2.

• For m = 2, the only eligible small number is 2, which gives the cycle (2, 8, 4). The only
way to get to 2 is by dividing 4 by 2, so the starting numbers greater than 2 are all
numbers that lead to 4, which are the powers of 2.

• Form = 3, the eligible small numbers are 4 and 6; we then obtain 4, 24, 12, 6, 44, 22, 11, 11/2.

• For m = 4, the eligible small numbers are 8 and 12; we then obtain 8, 80, 40, 20, 10, . . . or
12, 160, 80, 40, 20, 10, . . ., but in either case 10 is not an elegible small number.

Problem 3. Let ABC

be a scalene triangle with circumcircle Γ. Let M be the midpoint of BC. A variable point P
is selected in the line segment AM . The circumcircles of triangles BPM and CPM intersect
Γ again at points D and E, respectively. The lines DP and EP intersect (a second time) the
circumcircles to triangles CPM and BPM at X and Y , respectively. Prove that as P varies,
the circumcircle of 4AXY passes through a fixed point T distinct from A.

Solution. Let N be the radical center of the circumcircles of triangles ABC,BMP and
CMP . The pairwise radical axes of these circles are BD,CE and PM , and hence they concur
at N . Now, note that in directed angles:

∠MCE = ∠MPE = ∠MPY = ∠MBY.
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It follows that BY is parallel to CE, and analogously that CX is parallel to BD. Then, if L
is the intersection of BY and CX, it follows that BNCL is a parallelogram. Since BM = MC
we deduce that L is the reflection of N with respect to M , and therefore L ∈ AM . Using power
of a point from L to the circumcircles of triangles BPM and CPM , we have

LY · LB = LP · LM = LX · LC.

Hence, BYXC is cyclic. Using the cyclic quadrilateral we find in directed angles:

∠LXY = ∠LBC = ∠BCN = ∠NDE.

Since CX ‖ BN , it follows that XY ‖ DE.
Let Q and R be two points in Γ such that CQ,BR, and AM are all parallel. Then in

directed angles:

∠QDB = ∠QCB = ∠AMB = ∠PMB = ∠PDB.

Then D,P,Q are collinear. Analogously E,P,R are collinear. From here we get ∠PRQ =
∠PDE = ∠PXY , since XY and DE are parallel. Therefore QRYX is cyclic. Let S be the
radical center of the circumcircle of triangle ABC and the circles BCYX and QRYX. This
point lies in the lines BC,QR and XY because these are the radical axes of the circles. Let
T be the second intersection of AS with Γ. By power of a point from S to the circumcircle of
ABC and the circle BCXY we have

SX · SY = SB · SC = ST · SA.
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Therefore T is in the circumcircle of triangle AXY . Since Q and R are fixed regardless of
the choice of P , then S is also fixed, since it is the intersection of QR and BC. This implies
T is also fixed, and therefore, the circumcircle of triangle AXY goes through T 6= A for any
choice of P .

Now we show an alternative way to prove that BCXY and QRXT are cyclic.
Solution 2. Let the lines DP and EP meet the circumcircle of ABC again at Q and R,

respectively. Then ∠DQC∠DBC = ∠DPM , so QC ‖ PM . Similarly, RB ‖ PM .

Now, ∠QCB = ∠PMB = ∠PXC = ∠(QX,CX), which is half of the arc QC in the
circumcircle ωC of QXC. So ωC is tangent to BS; analogously, ωB, the circumcicle of RY B,
is also tangent to BC. Since BR ‖ CQ, the inscribed trapezoid BRQC is isosceles, and by
symmetry QR is also tangent to both circles, and the common perpendicular bisector of BR
and CQ passes through the centers of ωB and ωC . Since MB = MC and PM ‖ BR ‖ CQ, the
line PM is the radical axis of ωB and ωC .

However, PM is also the radical axis of the circumcircles γB of PMB and γC of PMC.
Let CX and PM meet at Z. Let p(K,ω) denote the power of a point K with respect to a
circumference ω. We have

p(Z, γB) = p(Z, γC) = ZX · ZC = p(Z, ωB) = p(Z, ωC).

Point Z is thus the radical center of γB, γC , ωB, ωC . Thus, the radical axes BY,CX,PM meet
at Z. From here,

ZY · ZB = ZC · ZX ⇒ BCXY cyclic

PY · PR = PX · PQ⇒ QRXT cyclic.

We may now finish as in Solution 1.

Problem 4. Consider a 2018 × 2019 board with integers in each unit square. Two unit
squares are said to be neighbours if they share a common edge. In each turn, you choose some
unit squares. Then for each chosen unit square the average of all its neighbours is calculated.
Finally, after these calculations are done, the number in each chosen unit square is replaced by
the corresponding average. Is it always possible to make the numbers in all squares become
the same after finitely many turns?

Answer: No

5



Solution. Let n be a positive integer relatively prime to 2 and 3. We may study the whole
process modulo n by replacing divisions by 2, 3, 4 with multiplications by the corresponding
inverses modulo n. If at some point the original process makes all the numbers equal, then the
process modulo n will also have all the numbers equal. Our aim is to choose n and an initial
configuration modulo n for which no process modulo n reaches a board with all numbers equal
modulo n. We split this goal into two lemmas.

Lemma 1. There is a 2 × 3 board that stays constant modulo 5 and whose entries are not
all equal.

Proof. Here is one such a board:

The fact that the board remains constant regardless of the choice of squares can be checked
square by square.

Lemma 2. If there is an r × s board with r ≥ 2, s ≥ 2, that stays constant modulo 5, then
there is also a kr × ls board with the same property.

Proof. We prove by a case by case analysis that repeateadly reflecting the r × s with respect
to an edge preserves the property:

• If a cell had 4 neighbors, after reflections it still has the same neighbors.

• If a cell with a had 3 neighbors b, c, d, we have by hypothesis that a ≡ 3−1(b + c + d) ≡
2(b+ c+ d) (mod 5). A reflection may add a as a neighbor of the cell and now

4−1(a+ b+ c+ d) ≡ 4(a+ b+ c+ d) ≡ 4a+ 2a ≡ a (mod 5)

• If a cell with a had 2 neighbors b, c, we have by hypothesis that a ≡ 2−1(b+ c) ≡ 3(b+ c)
(mod 5). If the reflections add one a as neighbor, now

3−1(a+ b+ c) ≡ 2(3(b+ c) + b+ c) ≡ 8(b+ c) ≡ 3(b+ c) ≡ a (mod 5)

• If a cell with a had 2 neighbors b, c, we have by hypothesis that a ≡ 2−1(b+ c) (mod 5).
If the reflections add two a’s as neighbors, now

4−1(2a+ b+ c) ≡ (2−1a+ 2−1a) ≡ a (mod 5)

In the three cases, any cell is still preserved modulo 5 after an operation. Hence we can fill
in the kr × ls board by k × l copies by reflection.

Since 2|2018 and 3|2019, we can get through reflections the following board:
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By the lemmas above, the board is invariant modulo 5, so the answer is no.

Problem 5. Determine all the functions f : R→ R such that

f(x2 + f(y)) = f(f(x)) + f(y2) + 2f(xy)

for all real number x and y.

Answer: The possible functions are f(x) = 0 for all x and f(x) = x2 for all x.

Solution. By substituting x = y = 0 in the given equation of the problem, we obtain that
f(0) = 0. Also, by substituting y = 0, we get f(x2) = f(f(x)) for any x.

Furthermore, by letting y = 1 and simplifying, we get

2f(x) = f(x2 + f(1))− f(x2)− f(1),

from which it follows that f(−x) = f(x) must hold for every x.
Suppose now that f(a) = f(b) holds for some pair of numbers a, b. Then, by letting y = a

and y = b in the given equation, comparing the two resulting identities and using the fact that
f(a2) = f(f(a)) = f(f(b)) = f(b2) also holds under the assumption, we get the fact that

f(a) = f(b)⇒ f(ax) = f(bx) for any real number x. (1)

Consequently, if for some a 6= 0, f(a) = 0, then we see that, for any x, f(x) = f(a · x
a
) =

f(0 · x
a
) = f(0) = 0, which gives a trivial solution to the problem.

In the sequel, we shall try to find a non-trivial solution for the problem. So, let us assume
from now on that if a 6= 0 then f(a) 6= 0 must hold. We first note that since f(f(x)) = f(x2)
for all x, the right-hand side of the given equation equals f(x2) + f(y2) + 2f(xy), which is
invariant if we interchange x and y. Therefore, we have

f(x2) + f(y2) + 2f(xy) = f(x2 + f(y)) = f(y2 + f(x)) for every pair x, y. (2)

Next, let us show that for any x, f(x) ≥ 0 must hold. Suppose, on the contrary, f(s) = −t2
holds for some pair s, t of non-zero real numbers. By setting x = s, y = t in the right hand
side of (2), we get f(s2 + f(t)) = f(t2 + f(s)) = f(0) = 0, so f(t) = −s2. We also have
f(t2) = f(−t2) = f(f(s)) = f(s2). By applying (2) with x =

√
s2 + t2 and y = s, we obtain

f(s2 + t2) + 2f(s ·
√
s2 + t2) = 0,

and similarly, by applying (2) with x =
√
s2 + t2 and y = t, we obtain

f(s2 + t2) + 2f(t ·
√
s2 + t2) = 0.

Consequently, we obtain
f(s ·

√
s2 + t2) = f(t ·

√
s2 + t2).

By applying (1) with a = s
√
s2 + t2, b = t

√
s2 + t2 and x = 1/

√
s2 + t2, we obtain f(s) =

f(t) = −s2, from which it follows that

0 = f(s2 + f(s)) = f(s2) + f(s2) + 2f(s2) = 4f(s2),

a contradiction to the fact s2 > 0. Thus we conclude that for all x 6= 0, f(x) > 0 must be
satisfied.

Now, we show the following fact

k > 0, f(k) = 1⇔ k = 1. (3)
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Let k > 0 for which f(k) = 1. We have f(k2) = f(f(k)) = f(1), so by (1), f(1/k) = f(k) =
1, so we may assume k ≥ 1. By applying (2) with x =

√
k2 − 1 and y = k, and using f(x) ≥ 0,

we get

f(k2 − 1 + f(k)) = f(k2 − 1) + f(k2) + 2f(k
√
k2 − 1) ≥ f(k2 − 1) + f(k2).

This simplifies to 0 ≥ f(k2 − 1) ≥ 0, so k2 − 1 = 0 and thus k = 1.
Next we focus on showing f(1) = 1. If f(1) = m ≤ 1, then we may proceed as above

by setting x =
√

1−m and y = 1 to get m = 1. If f(1) = m ≥ 1, now we note that
f(m) = f(f(1)) = f(12) = f(1) = m ≤ m2. We may then proceed as above with x =

√
m2 −m

and y = 1 to show m2 = m and thus m = 1.
We are now ready to finish. Let x > 0 and m = f(x). Since f(f(x)) = f(x2), then f(x2) =

f(m). But by (1), f(m/x2) = 1. Therefore m = x2. For x < 0, we have f(x) = f(−x) = f(x2)
as well. Therefore, for all x, f(x) = x2.

Solution 2 After proving that f(x) > 0 for x 6= 0 as in the previous solution, we may also
proceed as follows. We claim that f is injective on the positive real numbers. Suppose that
a > b > 0 satisfy f(a) = f(b). Then by setting x = 1/b in (1) we have f(a/b) = f(1). Now,
by induction on n and iteratively setting x = a/b in (1) we get f((a/b)n) = 1 for any positive
integer n.

Now, let m = f(1) and n be a positive integer such that (a/b)n > m. By setting x =√
(a/b)n −m and y = 1 in (2) we obtain that

f((a/b)n −m+ f(1)) = f((a/b)n −m) + f(12) + 2f(
√

(a/b)n −m)) ≥ f((a/b)n −m) + f(1).

Since f((a/b)n) = f(1), this last equation simplifies to f((a/b)n − m) ≤ 0 and thus m =
(a/b)n. But this is impossible since m is constant and a/b > 1. Thus, f is injective on the
positive real numbers. Since f(f(x)) = f(x2), we obtain that f(x) = x2 for any real value x.
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