
APMO 2023 – Problems and Solutions

Problem 1
Let n ≥ 5 be an integer. Consider n squares with side lengths 1, 2, . . . , n, respectively. The
squares are arranged in the plane with their sides parallel to the x and y axes. Suppose that
no two squares touch, except possibly at their vertices.
Show that it is possible to arrange these squares in a way such that every square touches exactly
two other squares.

Solution 1
Set aside the squares with sidelengths n− 3, n− 2, n− 1, and n and suppose we can split the
remaining squares into two sets A and B such that the sum of the sidelengths of the squares
in A is 1 or 2 units larger than the sum of the sidelengths of the squares in B.
String the squares of each set A,B along two parallel diagonals, one for each diagonal. Now
use the four largest squares along two perpendicular diagonals to finish the construction: one
will have sidelengths n and n− 3, and the other, sidelengths n− 1 and n− 2. If the sum of the
sidelengths of the squares in A is 1 unit larger than the sum of the sidelengths of the squares
in B, attach the squares with sidelengths n− 3 and n− 1 to the A-diagonal, and the other two
squares to the B-diagonal. The resulting configuration, in which the A and B-diagonals are
represented by unit squares, and the sidelengths ai of squares from A and bj of squares from B
are indicated within each square, follows:

n− 3

n

a1 a2 a3 · · · ak n− 2

n− 1b1 b2 b3 · · · b`

Since (a1 + a2 + · · · + ak)
√

2 + ((n−3)+(n−2))
√
2

2
= (b1 + b2 + · · · + b` + 2)

√
2 + (n+(n−1))

√
2

2
, this

case is done.
If the sum of the sidelengths of the squares in A is 1 unit larger than the sum of the sidelengths
of the squares in B, attach the squares with sidelengths n− 3 and n− 2 to the A-diagonal, and
the other two squares to the B-diagonal. The resulting configuration follows:

n− 3

n

a1 a2 a3 · · · ak n− 1

n− 2b1 b2 b3 · · · b`
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Since (a1 + a2 + · · · + ak)
√

2 + ((n−3)+(n−1))
√
2

2
= (b1 + b2 + · · · + b` + 1)

√
2 + (n+(n−2))

√
2

2
, this

case is also done.
In both cases, the distance between the A-diagonal and the B-diagonal is ((n−3)+n)

√
2

2
= (2n−3)

√
2

2
.

Since ai, bj ≤ n − 4,
(ai+bj)

√
2

2
< (2n−4)

√
2

2
< (2n−3)

√
2

2
, and therefore the A- and B-diagonals do

not overlap.
Finally, we prove that it is possible to split the squares of sidelengths 1 to n− 4 into two sets
A and B such that the sum of the sidelengths of the squares in A is 1 or 2 units larger than
the sum of the sidelengths of the squares in B. One can do that in several ways; we present
two possibilities:

� Direct construction: Split the numbers from 1 to n−4 into several sets of four consecutive
numbers {t, t+1, t+2, t+3}, beginning with the largest numbers; put squares of sidelengths
t and t+ 3 in A and squares of sidelengths t+ 1 and t+ 2 in B. Notice that t+ (t+ 3) =
(t+ 1) + (t+ 2). In the end, at most four numbers remain.

– If only 1 remains, put the corresponding square in A, so the sum of the sidelengths
of the squares in A is one unit larger that those in B;

– If 1 and 2 remains, put the square of sidelength 2 in A and the square of sidelength
1 in B (the difference is 1);

– If 1, 2, and 3 remains, put the squares of sidelengths 1 and 3 in A, and the square
of sidelength 2 in B (the difference is 2);

– If 1, 2, 3, and 4 remains, put the squares of sidelengths 2 and 4 in A, and the squares
of sidelengths 1 and 3 in B (the difference is 2).

� Indirect construction: Starting with A and B as empty sets, add the squares of sidelengths
n − 4, n − 3, . . . , 2 to either A or B in that order such that at each stage the difference
between the sum of the sidelengths in A and the sum of the sidelengths of B is minimized.
By induction it is clear that after adding an integer j to one of the sets, this difference is
at most j. In particular, the difference is 0, 1 or 2 at the end. Finally adding the final 1
to one of the sets can ensure that the final difference is 1 or 2. If necessary, flip A and B.

Solution 2
Solve the problem by induction in n. Construct examples for n = 5, 6, 7, 8, 9, 10 (one can use
the constructions from the previous solution, for instance). For n > 10, set aside the six larger
squares and arrange them in the following fashion:

n

n− 3

n− 5 n− 2

n− 1n− 4
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By the induction hypothesis, one can arrange the remaining n − 6 squares away from the six
larger squares, so we are done.
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Problem 2
Find all integers n satisfying n ≥ 2 and σ(n)

p(n)−1 = n, in which σ(n) denotes the sum of all positive

divisors of n, and p(n) denotes the largest prime divisor of n.

Answer: n = 6.

Solution
Let n = pα1

1 · . . . · p
αk
k be the prime factorization of n with p1 < . . . < pk, so that p(n) = pk and

σ(n) = (1 + p1 + · · ·+ pα1
1 ) . . . (1 + pk + · · ·+ pαk

k ). Hence

pk−1 =
σ(n)

n
=

k∏
i=1

(
1 +

1

pi
+ · · ·+ 1

pαi
i

)
<

k∏
i=1

1

1− 1
pi

=
k∏
i=1

(
1 +

1

pi − 1

)
≤

k∏
i=1

(
1 +

1

i

)
= k+1,

that is, pk−1 < k+1, which is impossible for k ≥ 3, because in this case pk−1 ≥ 2k−2 ≥ k+1.
Then k ≤ 2 and pk < k + 2 ≤ 4, which implies pk ≤ 3.
If k = 1 then n = pα and σ(n) = 1 + p + · · · + pα, and in this case n - σ(n), which is not
possible. Thus k = 2, and n = 2α3β with α, β > 0. If α > 1 or β > 1,

σ(n)

n
>

(
1 +

1

2

)(
1 +

1

3

)
= 2.

Therefore α = β = 1 and the only answer is n = 6.

Comment: There are other ways to deal with the case n = 2α3β. For instance, we have
2α+23β = (2α+1− 1)(3β+1− 1). Since 2α+1− 1 is not divisible by 2, and 3β+1− 1 is not divisible
by 3, we have{

2α+1 − 1 = 3β

3β+1 − 1 = 2α+2
⇐⇒

{
2α+1 − 1 = 3β

3 · (2α+1 − 1)− 1 = 2 · 2α+1 ⇐⇒

{
2α+1 = 4

3β = 3
,

and n = 2α3β = 6.
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Problem 3
Let ABCD be a parallelogram. Let W , X, Y , and Z be points on sides AB, BC, CD, and
DA, respectively, such that the incenters of triangles AWZ, BXW , CYX and DZY form a
parallelogram. Prove that WXY Z is a parallelogram.

Solution
Let the four incenters be I1, I2, I3, and I4 with inradii r1, r2, r3, and r4 respectively (in the
order given in the question). Without loss of generality, let I1 be closer to AB than I2. Let the
acute angle between I1I2 and AB (and hence also the angle between I3I4 and CD) be θ. Then

r2 − r1 = I1I2 sin θ = I3I4 sin θ = r4 − r3,

which implies r1 + r4 = r2 + r3. Similar arguments show that r1 + r2 = r3 + r4. Thus we obtain
r1 = r3 and r2 = r4.

D C

A BW

Y

X

Z

I1 I2

I3
I4

Now let’s consider the possible positions of W , X, Y , Z. Suppose AZ 6= CX. Without loss of
generality assume AZ > CX. Since the incircles of AWZ and CYX are symmetric about the
centre of the parallelogram ABCD, this implies CY > AW . Using similar arguments, we have

CY > AW =⇒ BW > DY =⇒ DZ > BX =⇒ CX > AZ,

which is a contradiction. Therefore AZ = CX =⇒ AW = CY and WXY Z is a parallelogram.

Comment: There are several ways to prove that r1 = r3 and r2 = r4. The proposer shows the
following three alternative approaches:
Using parallel lines: Let O be the centre of parallelogram ABCD and P be the centre of
parallelogram I1I2I3I4. Since AI1 and CI3 are angle bisectors, we must have AI1 ‖ CI3. Let
`1 be the line through O parallel to AI1. Since AO = OC, `1 is halfway between AI1 and CI3.
Hence P must lie on `1.
Similarly, P must also lie on `2, the line through O parallel to BI2. Thus P is the intersection
of `1 and `2, which must be O. So the four incentres and hence the four incircles must be
symmetric about O, which implies r1 = r3 and r2 = r4.
Using a rotation: Let the bisectors of ∠DAB and ∠ABC meet at X and the bisectors of
∠BCD and ∠CDA meet at Y . Then I1 is on AX, I2 is on BX, I3 is on CY , and I4 is on DY .
Let O be the centre of ABCD. Then a 180 degree rotation about O takes 4AXB to 4CYD.
Under the same transformation I1I2 is mapped to a parallel segment I ′1I

′
2 with I ′1 on CY and I ′2

on DY . Since I1I2I3I4 is a parallelogram, I3I4 = I1I2 and I3I4 ‖ I1I2. Hence I ′1I
′
2 and I3I4 are

parallel, equal length segments on sides CY , DY and we conclude that I ′1 = I3, I
′
2 = I4. Hence

the centre of I1I2I3I4 is also O and we establish that by rotational symmetry that r1 = r3 and
r2 = r4.
Using congruent triangles: Let AI1 and BI2 intersect at E and let CI3 and DI4 intersect at
F . Note that 4ABE and 4CDF are congruent, since AB = CD and corresponding pairs of
angles are equal (equal opposite angles parallelogram ABCD are each bisected).
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Since AI1 ‖ CI3 and I1I2 ‖ I4I3, ∠I2I1E = ∠I4I3F . Similarly ∠I1I2E = ∠I3I4F . Furthermore
I1I2 = I3I4. Hence triangles I2I1E and I4I3F are also congruent.
Hence ABEI1I2 and DCFI3I4 are congruent. Therefore, the perpendicular distance from I1
to AB equals the perpendicular distance from I3 to CD, that is, r1 = r3. Similarly r2 = r4.
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Problem 4
Let c > 0 be a given positive real and R>0 be the set of all positive reals. Find all functions
f : R>0 → R>0 such that

f((c+ 1)x+ f(y)) = f(x+ 2y) + 2cx for all x, y ∈ R>0.

Answer: f(x) = 2x for all x > 0.

Solution 1
We first prove that f(x) ≥ 2x for all x > 0. Suppose, for the sake of contradiction, that
f(y) < 2y for some positive y. Choose x such that f((c+ 1)x+ f(y)) and f(x+ 2y) cancel out,
that is,

(c+ 1)x+ f(y) = x+ 2y ⇐⇒ x =
2y − f(y)

c
.

Notice that x > 0 because 2y − f(y) > 0. Then 2cx = 0, which is not possible. This
contradiction yields f(y) ≥ 2y for all y > 0.
Now suppose, again for the sake of contradiction, that f(y) > 2y for some y > 0. Define the
following sequence: a0 is an arbitrary real greater than 2y, and f(an) = f(an−1) + 2cx, so that{

(c+ 1)x+ f(y) = an

x+ 2y = an−1
⇐⇒ x = an−1 − 2y and an = (c+ 1)(an−1 − 2y) + f(y).

If x = an−1 − 2y > 0 then an > f(y) > 2y, so inductively all the substitutions make sense.
For the sake of simplicity, let bn = an − 2y, so bn = (c + 1)bn−1 + f(y)− 2y (∗). Notice that
x = bn−1 in the former equation, so f(an) = f(an−1) + 2cbn−1. Telescoping yields

f(an) = f(a0) + 2c
n−1∑
i=0

bi.

One can find bn from the recurrence equation (∗): bn =
(
b0 + f(y)−2y

c

)
(c + 1)n − f(y)−2y

c
, and

then

f(an) = f(a0) + 2c
n−1∑
i=0

((
b0 +

f(y)− 2y

c

)
(c+ 1)i − f(y)− 2y

c

)
= f(a0) + 2

(
b0 +

f(y)− 2y

c

)
((c+ 1)n − 1)− 2n(f(y)− 2y).

Since f(an) ≥ 2an = 2bn + 4y,

f(a0) + 2

(
b0 +

f(y)− 2y

c

)
((c+ 1)n − 1)− 2n(f(y)− 2y) ≥ 2bn + 4y

= 2

(
b0 +

f(y)− 2y

c

)
(c+ 1)n − 2

f(y)− 2y

c
,

which implies

f(a0) + 2
f(y)− 2y

c
≥ 2

(
b0 +

f(y)− 2y

c

)
+ 2n(f(y)− 2y),

which is not true for sufficiently large n.
A contradiction is reached, and thus f(y) = 2y for all y > 0. It is immediate that this function
satisfies the functional equation.
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Solution 2
After proving that f(y) ≥ 2y for all y > 0, one can define g(x) = f(x) − 2x, g : R>0 → R≥0,
and our goal is proving that g(x) = 0 for all x > 0. The problem is now rewritten as

g((c+ 1)x+ g(y) + 2y) + 2((c+ 1)x+ g(y) + 2y) = g(x+ 2y) + 2(x+ 2y) + 2cx

⇐⇒ g((c+ 1)x+ g(y) + 2y) + 2g(y) = g(x+ 2y). (1)

This readily implies that g(x + 2y) ≥ 2g(y), which can be interpreted as z > 2y =⇒ g(z) ≥
2g(y), by plugging z = x+ 2y.
Now we prove by induction that z > 2y =⇒ g(z) ≥ 2m · g(y) for any positive integer 2m. In
fact, since (c+ 1)x+ g(y) + 2y > 2y, g((c+ 1)x+ g(y) + 2y) ≥ 2m · g(y), and by (??),

g(x+ 2y) ≥ 2m · g(y) + 2g(y) = 2(m+ 1)g(y),

and we are done by plugging z = x+ 2y again.
The problem now is done: if g(y) > 0 for some y > 0, choose a fixed z > 2y arbitrarily and

and integer m such that m > g(z)
2g(y)

. Then g(z) < 2m · g(y), contradiction.
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Problem 5
There are n line segments on the plane, no three intersecting at a point, and each pair inter-
secting once in their respective interiors. Tony and his 2n− 1 friends each stand at a distinct
endpoint of a line segment. Tony wishes to send Christmas presents to each of his friends as
follows:
First, he chooses an endpoint of each segment as a “sink”. Then he places the present at the
endpoint of the segment he is at. The present moves as follows:

� If it is on a line segment, it moves towards the sink.

� When it reaches an intersection of two segments, it changes the line segment it travels on
and starts moving towards the new sink.

If the present reaches an endpoint, the friend on that endpoint can receive their present. Prove
Tony can send presents to exactly n of his 2n− 1 friends.

Solution 1
Draw a circle that encloses all the intersection points between line segments and extend all
line segments until they meet the circle, and then move Tony and all his friends to the circle.
Number the intersection points with the circle from 1 to 2n anticlockwise, starting from Tony
(Tony has number 1). We will prove that the friends eligible to receive presents are the ones
on even-numbered intersection points.
First part: at most n friends can receive a present.
The solution relies on a well-known result: the n lines determine regions inside the circle; then
it is possible to paint the regions with two colors such that no regions with a common (line)
boundary have the same color. The proof is an induction on n: the fact immediately holds for
n = 0, and the induction step consists on taking away one line `, painting the regions obtained
with n − 1 lines, drawing ` again and flipping all colors on exactly one half plane determined
by `.
Now consider the line starting on point 1. Color the regions in red and blue such that neigh-
boring regions have different colors, and such that the two regions that have point 1 as a vertex
are red on the right and blue on the left, from Tony’s point of view. Finally, assign to each
red region the clockwise direction and to each blue region the anticlockwise direction. Because
of the coloring, every boundary will have two directions assigned, but the directions are the
same since every boundary divides regions of different colors. Then the present will follow the
directions assigned to the regions: it certainly does for both regions in the beginning, and when
the present reaches an intersection it will keep bordering one of the two regions it was dividing.
To finish this part of the problem, consider the regions that share a boundary with the circle.
The directions alternate between outcoming and incoming, starting from 1 (outcoming), so all
even-numbered vertices are directed as incoming and are the only ones able to receive presents.
Second part: all even-numbered vertices can receive a present.
First notice that, since every two chords intersect, every chord separates the endpoints of each
of the other n− 1 chords. Therefore, there are n− 1 vertices on each side of every chord, and
each chord connects vertices k and k + n, 1 ≤ k ≤ n.
We prove a stronger result by induction in n: let k be an integer, 1 ≤ k ≤ n. Direct each
chord from i to i + n if 1 ≤ i ≤ k and from i + n to i otherwise; in other words, the sinks are
k+ 1, k+ 2, . . ., k+ n. Now suppose that each chord sends a present, starting from the vertex
opposite to each sink, and all presents move with the same rules. Then k − i sends a present
to k + i + 1, i = 0, 1, . . . , n − 1 (indices taken modulo 2n). In particular, for i = k − 1, Tony,
in vertex 1, send a present to vertex 2k. Also, the n paths the presents make do not cross (but
they may touch.) More formally, for all i, 1 ≤ i ≤ n, if one path takes a present from k − i
to k + i + 1, separating the circle into two regions, all paths taking a present from k − j to
k + j + 1, j < i, are completely contained in one region, and all paths taking a present from
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k − j to k + j + 1, j > i, are completely contained in the other region. For instance, possible1

paths for k = 3 and n = 5 follow:

1

2

3

4

5

10

9

8

7

6

The result is true for n = 1. Let n > 1 and assume the result is true for less chords. Consider
the chord that takes k to k+n and remove it. Apply the induction hypothesis to the remaining
n − 1 lines: after relabeling, presents would go from k − i to k + i + 2, 1 ≤ i ≤ n − 1 if the
chord were not there.
Reintroduce the chord that takes k to k+n. From the induction hypothesis, the chord intersects
the paths of the presents in the following order: the i-th path the chord intersects is the the
one that takes k − i to k + i, i = 1, 2, . . . , n− 1.

k

k + n

k − 1 k + 1

k − n+ 1 k + n− 1

k − 2 k + 2

k − 3 k + 3

...

Paths without chord k → k + n

k − 1 k + 1

k − 2 k + 2

k − 3 k + 3

k − n+ 1 k + n− 1

k

k + n

...

Corrected paths with chord k → k + n

Then the presents cover the following new paths: the present from k will leave its chord and
take the path towards k + 1; then, for i = 1, 2, . . . , n− 1, the present from k − i will meet the
chord from k to k+n, move towards the intersection with the path towards k+ i+ 1 and go to
k+ i+ 1, as desired. Notice that the paths still do not cross. The induction (and the solution)
is now complete.

Solution 2
First part: at most n friends can receive a present.
Similarly to the first solution, consider a circle that encompasses all line segments, extend the
lines, and use the endpoints of the chords instead of the line segments, and prove that each
chord connects vertices k and k+n. We also consider, even in the first part, n presents leaving
from n outcoming vertices.
First we prove that a present always goes to a sink. If it does not, then it loops; let it first
enter the loop at point P after turning from chord a to chord b. Therefore after it loops once,

1The paths do not depend uniquely on k and n; different chord configurations and vertex labelings may
change the paths.
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it must turn to chord b at P . But P is the intersection of a and b, so the present should turn
from chord a to chord b, which can only be done in one way – the same way it came in first.
This means that some part of chord a before the present enters the loop at P is part of the
loop, which contradicts the fact that P is the first point in the loop. So no present enters a
loop, and every present goes to a sink.

a

P

b
There are no loops

a

P

b
No two paths cross

The present paths also do not cross: in fact, every time two paths share a point P , intersection
of chords a and b, one path comes from a to b and the other path comes from b to a, and they
touch at P . This implies the following sequence of facts:

� Every path divides the circle into two regions with paths connecting vertices within each
region.

� All n presents will be delivered to n different persons; that is, all sinks receive a present.
This implies that every vertex is an endpoint of a path.

� The number of chord endpoints inside each region is even, because they are connected
within their own region.

Now consider the path starting at vertex 1, with Tony. It divides the circle into two regions
with an even number of vertices in their interior. Then there is an even number of vertices
between Tony and the recipient of his present, that is, their vertex is an even numbered one.
Second part: all even-numbered vertices can receive a present.
The construction is the same as the in the previous solution: direct each chord from i to i+ n
if 1 ≤ i ≤ k and from i+ n to i otherwise; in other words, the sinks are k+ 1, k+ 2, . . ., k+ n.
Then, since the paths do not cross, k will send a present to k + 1, k − 1 will send a present to
k + 2, and so on, until 1 sends a present to (k + 1) + (k − 1) = 2k.
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